scholarly journals Variaciones espaciales y ontogenéticas en la dieta de un plecóptero de amplia distribución Claudioperla tigrina Klapálek (Plecoptera: Gripopterygidae)

2017 ◽  
Vol 65 (3) ◽  
pp. 1174
Author(s):  
María Celina Reynaga ◽  
Natalia Dávalos ◽  
Carlos Molineri

Dietary information gives insight into several ecological processes acting in lotic ecosystems. This work aimed: 1) to identify the dietary habits of Claudioperla tigrina immature stages along a wide altitudinal as well as latitudinal gradient in North Argentina; 2) to define the functional feeding group (FFG) of C. tigrina; 3) to evaluate differences in diet in the studied sites. Studied nymphs were collected from localities widely scattered in Northwestern Argentina and they fell into different developmental stages (four size classes). The ingested material was extracted from the foregut and midgut by using thorax ventral dissection. Dietary profiles were analyzed through the estimation of parameters associated with a Dirichlet-multinomial distribution. ANOVA’s were performed for each food item using sites as factor. Multidimensional Scaling was used to identify sites with similar dietary profiles. An analysis of food-niche breadth was also performed to evaluate the degree of dietary diversification for the resources consumed in each site. Mouthparts are similar across the different size classes, excepting the increasing sclerotization recorded with age. Mouthparts retained most of the typical chewing groundplan, showing relatively short labial and maxillar palps, and strong, sclerotized and denticulated mandibles and maxillae. Our results pointed out that the nymphs of C. tigrina always ingest two or more food items (CPOM, FPOM, invertebrates and algae), suggesting thus a flexible diet. The diet changed in relation to body size, while finer particles were consumed in the early stages, larger particles were ingested in final stages. Coarse particulate organic matter was the dominant food item, with signals of shredding during ingestion. Differences between sites for FPOM, invertebrates, algae and sediment were detected, but not for MOPG. Correlations were obtained for the first two axis of the MDS analysis. Sites AP, LT, LI, C and M (Yungas Rainforest and Humid Grassland) were negatively correlated with the axis 1 which was associated with increased consumption of FPOM. On the positive side of the axis the site P (High Andes) is associated with a greater proportion of invertebrates and sediment. The sites IN (Humid Grassland) and LR (Argentine Northwest Monte and Thistle of the Prepuna) were located at the positive domain of axis 2 which is in turn associated with a greater count of algae in the dietary contents. We found significant differences in the quantity of secondary items, and this is likely related with the resources environmental availability. The FFG of Claudioperla tigrina is primarily shredder/collector-gatherer in Yungas Rainforest and Humid Grassland shredder/predator in High Andes. FFG classification of C. tigrina and the definition of their role for organic matter processing is an important step for future studies based on functional groups such as analysis of food webs.

2021 ◽  
Author(s):  
A. L. Romero-Olivares ◽  
E. W. Morrison ◽  
A. Pringle ◽  
S. D. Frey

AbstractFungi are mediators of the nitrogen and carbon cycles in terrestrial ecosystems. Examining how nitrogen uptake and organic matter decomposition potential differs in fungi can provide insight into the underlying mechanisms driving fungal ecological processes and ecosystem functioning. In this study, we assessed the frequency of genes encoding for specific enzymes that facilitate nitrogen uptake and organic matter decomposition in 879 fungal genomes with fungal taxa grouped into trait-based categories. Our linked gene-trait data approach revealed that gene frequencies vary across and within trait-based groups and that trait-based categories differ in trait space. We present two examples of how this linked gene-trait approach can be used to address ecological questions. First, we show that this type of approach can help us better understand, and potentially predict, how fungi will respond to environmental stress. Specifically, we found that trait-based categories with high nitrogen uptake gene frequency increased in relative abundance when exposed to high soil nitrogen enrichment. Second, by comparing frequencies of nitrogen uptake and organic matter decomposition genes, we found that most ectomycorrhizal fungi in our dataset have similar gene frequencies to brown rot fungi. This demonstrates that gene-trait data approaches can shed light on potential evolutionary trajectories of life history traits in fungi. We present a framework for exploring nitrogen uptake and organic matter decomposition gene frequencies in fungal trait-based groups and provide two concise examples on how to use our framework to address ecological questions from a mechanistic perspective.


2021 ◽  
Author(s):  
Moritz Mohrlok ◽  
Victoria Martin ◽  
Alberto Canarini ◽  
Wolfgang Wanek ◽  
Michael Bahn ◽  
...  

<p>Soil organic matter (SOM) is composed of many pools with different properties (e.g. turnover times) which are generally used in biogeochemical models to predict carbon (C) dynamics. Physical fractionation methods are applied to isolate soil fractions that correspond to these pools. This allows the characterisation of chemical composition and C content of these fractions. There is still a lack of knowledge on how these individual fractions are affected by different climate change drivers, and therefore the fate of SOM remains elusive. We sampled soils from a multifactorial climate change experiment in a managed grassland in Austria four years after starting the experiment to investigate the response of SOM in physical soil fractions to temperature (eT: ambient and elevated by +3°C), atmospheric CO<sub>2</sub>-concentration (eCO<sub>2</sub>: ambient and elevated by +300 ppm) and to a future climate treatment (eT x eCO<sub>2</sub>: +3°C and + 300 ppm). A combination of slaking and wet sieving was used to obtain three size classes: macro-aggregates (maA, > 250 µm), micro-aggregates (miA, 63 µm – 250 µm) and free silt & clay (sc, < 63 µm). In both maA and miA, four different physical OM fractions were then isolated by density fractionation (using sodium polytungstate of ρ = 1.6 g*cm<sup>-3</sup>, ultrasonication and sieving): Free POM (fPOM), intra-aggregate POM (iPOM), silt & clay associated OM (SCaOM) and sand-associated OM (SaOM). We measured C and N contents and isotopic composition by EA-IRMS in all fractions and size classes and used a Pyrolysis-GC/MS approach to assess their chemical composition. For eCO<sub>2</sub> and eT x eCO<sub>2 </sub>plots, an isotope mixing-model was used to calculate the proportion of recent C derived from the elevated CO<sub>2 </sub>treatment. Total soil C and N did not significantly change with treatments.  eCO<sub>2</sub> decreased the relative proportion of maA-mineral-associated C and increased C in fPOM and iPOM. About 20% of bulk soil C was represented by the recent C derived from the CO<sub>2</sub> fumigation treatment. This significantly differed between size classes and density fractions (p < 0.001), which indicates inherent differences in OM age and turnover. Warming reduced the amount of new C incorporated into size classes. We found that each size class and fraction possessed a unique chemical fingerprint, but this was not significantly changed by the treatments. Overall, our results show that while climate change effects on total soil C were not significant after 4 years, soil fractions showed specific effects. Chemical composition differed significantly between size classes and fractions but was unaffected by simulated climate change. This highlights the importance to separate SOM into differing pools, while including changes to the molecular composition might not be necessary for improving model predictions.    </p>


1947 ◽  
Vol 85 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Leon L. Miller ◽  
Eric L. Alling

1. Further observations on the utilization of parenterally administered dog hemoglobin show that oral supplements of dl-methionine and l-cystine improve the efficiency of utilization of hemoglobin N, while a fed supplement of dl-isoleucine alone is without effect. 2. When N-isoleucine is added to a fed supplement of methionine or methionine and cystine, the utilization of parenterally given hemoglobin N is even better than with the sulfur-containing amino acids alone. 3. A suggested approach to the problem of designing the quantitatively "ideal" amino acid mixture lies in the definition of what may be called total organism-amino acid patterns of rat, dog, man, etc. These may vary considerably not only at different developmental stages in a given species, but also certainly from one species to another. 4. Further attempts to detect globin in the peripheral circulation have pointed to the need for a highly specific procedure such as that an immunologic method may offer. 5. Reduced hemin in dog plasma migrates with α1-globulin and albumin in veronal buffer at pH 8.5 and the colored zones give strong hemochromogen absorption bands.


2000 ◽  
Vol 48 (4) ◽  
pp. 511 ◽  
Author(s):  
A. J. J. Lynch ◽  
V. J. Neldner

Options for a new definition of, and key for, rainforest in Australia are provided. The definitions take a national perspective, and are based on the ecological characteristics of rainforest species and some structural and floristic characteristics. Rainforest plant species are defined as those adapted to regenerating under low-light conditions experienced under the closed canopy or in localised gaps caused by recurring disturbances which are part of the natural rainforest ecosystem, and are not dependent on fire for successful regeneration. Three definitions are provided which differ in the extent of inclusion of transitional and seral communities. The first definition recognises communities such as mixed forests as transitional to rainforests and therefore as separate communities. The second definition includes a minimal component of emergent non-rainforest species in rainforest in the recognition that the main floristic component and functioning of the communities cannot be distinguished. The third definition includes the late successional stages of transitional and seral communities in rainforest on the presumption that such communities include non-rainforest species which are close to senescence, and that these communities are essential for the long-term conservation of rainforest in areas where rainforest is vulnerable and subject to major disturbance, particularly by fire. The first definition is concluded to be the least ambiguous and arbitrary, and enables a consistent approach to rainforest management. Recognition of mixed forests as a distinctive and mappable vegetation type should be incorporated in a comprehensive conservation strategy inclusive of all ecosystem developmental stages.


2019 ◽  
pp. 12-35
Author(s):  
A. S. Tesakov ◽  
O. V. Guydalenok ◽  
S. A. Sokolov ◽  
P. D. Frolov ◽  
V. G. Trifonov ◽  
...  

Studies in paleomagnetism, structural geology, and paleontology (mammals, molluscs, palynology) in the coastal sections of the Taman Peninsula north-eastern part (2017–18) resulted in definition of three sedimentary members. The sandy and clayey lower member (I) formed at 2.1–1.7 Ma. It contains a normally magnetised zone within deposits of reversed polarity correlated to the Olduvai Subchron and the Matuyama Chron. The middle member (II) is composed of the basal pebbles overlain by sands. The reversely magnetised deposits hosting the Sinyaya Balka site, the type locality of the Tamanian faunal complex, is correlated to the basal bed of the middle member II. The overlying sands are normally magnetised (Jaramillo Subchron) in the lower part and show reverse polarity (late Matuyama Chron) in the upper part. The member II is dated in the range of 1.3–0.78 Ma. The silty upper member (III) represents Middle-Late Pleistocene. The dissimilar displacement degree of the members reflect developmental stages of the Quaternary deformation. The member I is characterised by dip angles up to 70° is fragmented by faults into blocks. The member II filled the relief of the eroded surface of the Member I and also displaced by faults. The faulting separated the bone-bearing body of the Taman faunal complex as a rock land-slide. The attitude of the member III outline an anticline with a gentle south-western and a steeper north-eastern limbs eroded by land-slides and marine abrasion. During its entire life the anticline was affected by mud volcanism. The anticline continues its development at the present stage.


2020 ◽  
Vol 23 (12) ◽  
pp. 1456-1468 ◽  
Author(s):  
Rafael Yuste ◽  
Michael Hawrylycz ◽  
Nadia Aalling ◽  
Argel Aguilar-Valles ◽  
Detlev Arendt ◽  
...  

AbstractTo understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do so using anatomical, physiological or molecular features of cortical cells have not resulted in a unified taxonomy of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the first time, systematic high-throughput measurements of cortical cells and generation of datasets that hold the promise of being complete, accurate and permanent. Statistical analyses of these data reveal clusters that often correspond to cell types previously defined by morphological or physiological criteria and that appear conserved across cortical areas and species. To capitalize on these new methods, we propose the adoption of a transcriptome-based taxonomy of cell types for mammalian neocortex. This classification should be hierarchical and use a standardized nomenclature. It should be based on a probabilistic definition of a cell type and incorporate data from different approaches, developmental stages and species. A community-based classification and data aggregation model, such as a knowledge graph, could provide a common foundation for the study of cortical circuits. This community-based classification, nomenclature and data aggregation could serve as an example for cell type atlases in other parts of the body.


2006 ◽  
Vol 53 (1) ◽  
pp. 225-240 ◽  
Author(s):  
M. de Gracia ◽  
L. Sancho ◽  
J.L. García-Heras ◽  
P. Vanrolleghem ◽  
E. Ayesa

This paper proposes a systematic methodology for the analysis of the mass and charge balances in dynamic models expressed using the Petersen matrix notation. This methodology is based on the definition of the model components via elemental mass fractions and in the estimation of the COD as a function of the redox equations associated with these elements. This approach makes the automatic calculation of all the stoichiometric coefficients under different measuring units and the study of COD, charge or mass fluxes easier. As an example of its application this methodology was applied to the ADM1 in order to illustrate its usefulness for the analysis of organic matter characterisation, nitrogen release or biogas composition in anaerobic digestion. The application of the methodology for a rigorous integration of different IWA models is proposed for further study.


2009 ◽  
Vol 364 (1520) ◽  
pp. 1107-1115 ◽  
Author(s):  
Jason B Wolf ◽  
Michael J Wade

Maternal effects can play an important role in a diversity of ecological and evolutionary processes such as population dynamics, phenotypic plasticity, niche construction, life-history evolution and the evolutionary response to selection. However, although maternal effects were defined by quantitative geneticists well over half a century ago, there remains some confusion over exactly what phenomena should be characterized as maternal effects and, more importantly, why it matters and how they are defined. We suggest a definition of maternal effects as the causal influence of the maternal genotype or phenotype on the offspring phenotype. This definition differs from some definitions in that it treats maternal effects as a phenomenon, not as a statistical construct. The causal link to maternal genotype or phenotype is the critical component of this definition providing the link between maternal effects and evolutionary and ecological processes. We show why phenomena such as maternal cytoplasmic inheritance and genomic imprinting are distinct genetically from and have different evolutionary consequences than true maternal effects. We also argue that one should consider cases where the maternal effect is conditional on offspring genotype as a class of maternal effects.


Sign in / Sign up

Export Citation Format

Share Document