scholarly journals Culturing of primary bovine mammary epithelial cells and validation of biotransformation capacity in experiments with enrofloxacin

2021 ◽  
Vol 24 (1) ◽  
pp. 97-107
Author(s):  
E. Vachkova ◽  
N. Vasilev ◽  
N. Grigorova ◽  
A. Milanova

Many drugs and toxic compounds are subjected to disposition and metabolism in bovine mammary epithelial cells (bMECs). For rapid investigation of different compounds and their possible interactions, validated in vitro models are needed. Therefore, the first objective of described experiments was to develop the techniques for cell isolation, purification and culturing of bMECs. The second objective was the application of these cell cultures in a well-known substrate for one of the major biotransformation enzymes in epithelial cells. To this end, the metabolism of enrofloxacin (ENR) into its active metabolite ciprofloxacin (CPR), was studied. This conversion is known to be catalysed by enzymes of the cytochrome P4501A and P4503A family. The expression profile of these enzymes shows a close correlation with cellular ABC-efflux transporters. Primary bMECs were isolated from healthy udders of lactating cows (n=5 animals). mRNA levels of α-casein, b-lactoferrin and cyclophilin B were determined as markers of cell identity of purity of the cultures. Subsequently, bMECs cultures were incubated with ENR (10 µM). Concentrations of ENR and its main metabolite CPR in the medium and in the cells were determined by HPLC-FL analysis. Gene expression of CYP1A1, CYP1A2 and CYP3A4, bovine ABCG2 was detected by qRT-PCR. Results showed that ENR penetrated into bMECs and was converted to CPR. CPR was excreted in the medium suggesting participation of ABCG2 in fluoroquinolone efflux. In conclusion, the data showed that the established bMEC cultures expressed major CYP450 enzymes as well as the most relevant efflux transport ABGG2. This model should be further validated and can serve as an interesting model for further studies on site-specific drug/toxin metabolism and transport in the bovine mammary gland.

2019 ◽  
Vol 86 (2) ◽  
pp. 177-180
Author(s):  
Jacqueline P. Kurz ◽  
Mark P. Richards ◽  
Matthew Garcia ◽  
Zhongde Wang

AbstractThis Research Communication addresses the hypothesis that exogenously administered phospholipase A2 (PLA2) affects the inflammatory responses of bovine mammary epithelial cells (bMEC) in vitro with the aim of providing preliminary justification of investigation into the uses of exogenously administered PLA2 to manage or treat bovine mastitis. Primary bMEC lines from 11 lactating Holstein dairy cows were established and the expression of 14 pro-inflammatory genes compared under unchallenged and lipopolysaccharide (LPS)-challenged conditions, with and without concurrent treatment with bovine pancreatic PLA2G1B, a secreted form of PLA2. No differences in the expression of these genes were noted between PLA2-treated and untreated bMEC under unchallenged conditions. Following LPS challenge, untreated bMEC exhibited significant downregulation of CXCL8, IL1B, CCL20, and CXCL1. In contrast, PLA2-treated bMEC exhibited significant downregulation of IL1B and CCL20 only. These findings indicate that exogenous PLA2 affects the expression of some pro-inflammatory factors in immune-stimulated bMEC, but does not influence the constitutive expression of these factors. Further investigation of the influence of exogenous PLA2 in the bovine mammary gland is justified.


2016 ◽  
Vol 96 (4) ◽  
pp. 478-487
Author(s):  
Cuiping Yu ◽  
Chaochao Luo ◽  
Xinyu Gu ◽  
Yanli Zang ◽  
Bo Qu ◽  
...  

The 14-3-3γ protein participates in many biological processes; however, its regulatory mechanism in milk protein synthesis is not well studied. We hypothesized that 14-3-3γ might affect eIF5 (an initiation factor) to regulate β-casein synthesis in dairy cows. In this study, a possible interaction between 14-3-3γ and eIF5 was investigated using bovine mammary epithelial cells (BMECs). The expression levels of 14-3-3γ and eIF5 in the mammary gland tissues from cows producing higher quality milk were higher than those from cows producing low-quality milk. Moreover, the expression of 14-3-3γ, eIF5, and β-casein were increased at both mRNA and protein levels in BMECs cultured in vitro with methionine (Met) supplementation. Coimmunoprecipitation, colocalization, and FRET analysis further showed the evidences that 14-3-3γ physically bound to eIF5 in BMECs. Gene function studies revealed that 14-3-3γ positively regulated eIF5 through alteration of eIF2α/p-eIF2α ratio. Collectively, our data suggest that 14-3-3γ regulates β-casein translation in BMECs through interaction with eIF5.


Sign in / Sign up

Export Citation Format

Share Document