Are the mosquito and vector control programs economic effective?

Author(s):  
Lambros Tsourgiannis ◽  
Despoina Chatzipanagiotou
2020 ◽  
Author(s):  
Ashwaq Madani Alnazawi ◽  
Simon Ashall ◽  
David Weetman

Vector control programs worldwide are facing the challenge of mosquitoes becoming resistant to available insecticides. Larviciding is a crucial preventative measure for dengue control but data on insecticide resistance of larval Ae. aegypti in the Middle Eastern Region are limited. This study assesses the susceptibility status of Ae. aegypti collected from the two most important dengue foci in Saudi Arabia, Jeddah and Makkah, to important chemical and biological larvicides; the organophosphate temephos and Bacillus thuringiensis israelensis, Bti). Whilst worldwide, and particularly in Latin America, high-level resistance to temephos is common, Jeddah and Makkah populations exhibited full susceptibility to both temephos and Bti. These data suggest each can be considered by vector control programs for preventative dengue control in the region, as part of temporal rotations or spatial mosaics to manage insecticide resistance.


Author(s):  
Atallah Fahd Mukhlaf , Zwan Thamer Khudair

All vector control programs emphasize the use of biological control. Anisops sardea (Notonectidae: Hemiptera) and Orthetrum chrysostigma (Libellulidae: Odonata) were common in freshwater communities in Mosul. They were predators of wing-wing larvae. The effectiveness of predisposition, efficacy of research, Study on predators O. chrysostigma, A. sardea using the incomplete stages of mosquitoes Culex pipiens molestus and Chironomus ninevah in the laboratory. Backbones consumed 9.0, 8.0, 6.7 and 6.7 of the four larval ages respectively and 5.3 virgins within 24 hours while the mantis nestled at the same time 8.7 6.7, 6.3 and 5.3 larvae of the four ages respectively and 3.3 virgins. Both predators preferred the third and fourth stages when faced with all the incomplete stages of the prey. The co-existence and synergy between predators O.chrysostigma and A.sardea increased the effectiveness of predation by 17% together. The number of prey consumed per day increased with increasing density in the predators' Search coefficient for both predators. The Orthetrum chrysostigma preferred the Hamoush larvae to the mosquito larvae while the  Anisops sardea preferred mosquito larvae to the Hamoush  larvae significantly.  


2019 ◽  
Author(s):  
Aryana Zardkoohi ◽  
David Castañeda ◽  
Carmen Castillo ◽  
Juan C Lol ◽  
Francisco Lopez ◽  
...  

AbstractAedes aegypti (Linnaeus, 1762) is considered the most important mosquito vector species for several arboviruses (e.g., dengue, chikungunya, Zika) in Costa Rica. The main strategy for the control and prevention of Aedes-borne diseases relies on insecticide-based vector control. However, the emergence of insecticide resistance in the mosquito populations present a big threat for the prevention actions. The characterization of the mechanisms driving the insecticide resistance in Ae. aegypti are vital for decision making in vector control programs. Therefore, we analyzed the voltage-gated sodium channel gene for the presence of the V1016I and F1534C kdr mutations in pyrethroid-resistant Ae. aegypti populations from Puntarenas and Limon provinces, Costa Rica. The CDC bottle bioassays showed that both Costa Rican Ae. aegypti populations were resistant to permethrin and deltamethrin. In the case of kdr genotyping, results revealed the co-occurrence of V1016I and F1534C mutations in permethrin and deltamethrin-resistant populations, as well as the fixation of the 1534C allele. Therefore, our findings make an urgent call to expand the knowledge about the insecticide resistance status and mechanisms in the Costa Rican populations of Ae. aegypti which must be a priority to develop an effective resistance management plan.


2020 ◽  
Vol 36 (2s) ◽  
pp. 41-48
Author(s):  
Heather M. Ward ◽  
Whitney A. Qualls

ABSTRACT Ideally, all mosquito control programs would have public health–driven and nuisance population–focused components in their mosquito control plan. However, due to resource limitations many mosquito control programs focus attention on one specific component of integrated mosquito control, i.e., adulticiding only. Programs run by public health departments with limited resources are frequently heavily focused on vector control, targeting a few mosquito species that are locally medically relevant in human and animal disease cycles. Focusing their mosquito management on these specific vector species can result in inefficiencies after hurricanes and severe flooding events that create a need for nuisance mosquito control. Floodwater nuisance species that emerge are not routinely a public health threat, but hinder operations related to response efforts and can negatively affect the lives of people in areas recovering from these disaster events. Staff, training, equipment, and facilities, when aimed at public health vector control, may not have the experience, knowledge, or tools to effectively respond to postdisaster, floodwater mosquito populations. As such, all mosquito management programs should have plans in place to handle not only known vectors of public health concern in response to mosquito-borne disease, but also to manage floodwater mosquito populations after natural disasters to safeguard public health and facilitate recovery operations. The current paper discusses the severe weather events in South Texas in 2018 and the resulting integrated nuisance floodwater mosquito control guidance developed by the Texas Department of State Health Services.


2020 ◽  
Vol 5 (4) ◽  
pp. 161
Author(s):  
Elerson Matos Rocha ◽  
Ricardo de Melo Katak ◽  
Juan Campos de Oliveira ◽  
Maisa da Silva Araujo ◽  
Bianca Cechetto Carlos ◽  
...  

In Brazil, malaria transmission is mostly confined to the Amazon, where substantial progress has been made towards disease control in the past decade. Vector control has been historically considered a fundamental part of the main malaria control programs implemented in Brazil. However, the conventional vector-control tools have been insufficient to control or eliminate local vector populations due to the complexity of the Amazonian rainforest environment and ecological features of malaria vector species in the Amazon, especially Anopheles darlingi. Malaria elimination in Brazil and worldwide eradication will require a combination of conventional and new approaches that takes into account the regional specificities of vector populations and malaria transmission dynamics. Here we present an overview on both conventional and novel promising vector-focused tools to curb malaria transmission in the Brazilian Amazon. If well designed and employed, vector-based approaches may improve the implementation of malaria-control programs, particularly in remote or difficult-to-access areas and in regions where existing interventions have been unable to eliminate disease transmission. However, much effort still has to be put into research expanding the knowledge of neotropical malaria vectors to set the steppingstones for the optimization of conventional and development of innovative vector-control tools.


2020 ◽  
Vol 117 (6) ◽  
pp. 3319-3325 ◽  
Author(s):  
Thomas J. Hladish ◽  
Carl A. B. Pearson ◽  
Kok Ben Toh ◽  
Diana Patricia Rojas ◽  
Pablo Manrique-Saide ◽  
...  

Viruses transmitted by Aedes mosquitoes, such as dengue, Zika, and chikungunya, have expanding ranges and seem unabated by current vector control programs. Effective control of these pathogens likely requires integrated approaches. We evaluated dengue management options in an endemic setting that combine novel vector control and vaccination using an agent-based model for Yucatán, Mexico, fit to 37 y of data. Our intervention models are informed by targeted indoor residual spraying (TIRS) experiments; trial outcomes and World Health Organization (WHO) testing guidance for the only licensed dengue vaccine, CYD-TDV; and preliminary results for in-development vaccines. We evaluated several implementation options, including varying coverage levels; staggered introductions; and a one-time, large-scale vaccination campaign. We found that CYD-TDV and TIRS interfere: while the combination outperforms either alone, performance is lower than estimated from their separate benefits. The conventional model hypothesized for in-development vaccines, however, performs synergistically with TIRS, amplifying effectiveness well beyond their independent impacts. If the preliminary performance by either of the in-development vaccines is upheld, a one-time, large-scale campaign followed by routine vaccination alongside aggressive new vector control could enable short-term elimination, with nearly all cases avoided for a decade despite continuous dengue reintroductions. If elimination is impracticable due to resource limitations, less ambitious implementations of this combination still produce amplified, longer-lasting effectiveness over single-approach interventions.


2016 ◽  
Vol 10 ◽  
pp. EHI.S39805 ◽  
Author(s):  
Justin Gerding ◽  
Micaela Kirshy ◽  
John W. Moran ◽  
Ron Bialek ◽  
Vanessa Lamers ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Henk van den Berg ◽  
Haroldo Sergio da Silva Bezerra ◽  
Samira Al-Eryani ◽  
Emmanuel Chanda ◽  
Bhupender N. Nagpal ◽  
...  

AbstractInsecticides have played a major role in the prevention, control, and elimination of vector-borne diseases, but insecticide resistance threatens the efficacy of available vector control tools. A global survey was conducted to investigate vector control insecticide use from 2010 to 2019. Out of 140 countries selected as sample for the study, 87 countries responded. Also, data on ex-factory deliveries of insecticide-treated nets (ITNs) were analyzed. Insecticide operational use was highest for control of malaria, followed by dengue, leishmaniasis and Chagas disease. Vector control relied on few insecticide classes with pyrethroids the most used overall. Results indicated that IRS programs have been slow to react to detection of pyrethroid resistance, while proactive resistance management using insecticides with unrelated modes of action was generally weak. The intensive use of recently introduced insecticide products raised concern about product stewardship regarding the preservation of insecticide susceptibility in vector populations. Resistance management was weakest for control of dengue, leishmaniasis or Chagas disease. Therefore, it will be vital that vector control programs coordinate on insecticide procurement, planning, implementation, resistance monitoring, and capacity building. Moreover, increased consideration should be given to alternative vector control tools that prevent the development of insecticide resistance.


2020 ◽  
Author(s):  
Sofia Balaska ◽  
Emmanouil Alexandros Fotakis ◽  
Ilias Kioulos ◽  
Linda Grigoraki ◽  
Spyridoula Mpellou ◽  
...  

Abstract Background: Aedes albopictus has a well-established presence in southern European countries, associated with recent disease outbreaks (e.g. Chikungunya). Development of insecticide resistance in the vector is a major concern as it’s control mainly relies on the use of biocides. Data on the specie’s resistance status is essential for efficient and sustainable control. Methods: We investigated the insecticide resistance status of several Ae. albopictus populations from Greece. Bioassays were performed against diflubenzuron (DFB), B. thuringiensis var. israelensis (Bti), deltamethrin and malathion. Molecular analysis of known insecticide resistance loci was performed, i.e. voltage-gated sodium channel (VGSC) mutations associated with pyrethroid resistance; presence and frequency of carboxylesterases 3 (CCEae3a) and 6 (CCEae6a) gene amplification associated with organophosphate (OP) resistance and; chitin synthase-1 (CHS-1) for the possible presence of DFB resistance mutations. Results: Bioassays showed full susceptibility to DFB, Bti and deltamethrin, but resistance against the OP malathion. VGSC analysis revealed a widespread distribution of mutations F1534C (in all populations, with allelic frequencies between 6.6% - 68.3%), and I1532T (in 6 populations), but absence of V1016G. CCE gene amplifications were recorded in 8 out of 11 populations. Co-presence of mutation F1534C and CCEae3a amplification was reported in a subgroup of samples. No mutations at the CHS locus I1043 were detected. Conclusions: The results indicate: (i) the suitability of larvicides DFB and Bti for Ae. albopictus control in Greece, (ii) a possible incipient pyrethroid resistance due to the presence of kdr mutations and (iii) a possible reduced efficacy of OPs, in a scenario of re-introducing them for vector control. The study highlights the need for systematic resistance monitoring for developing and implementing appropriate evidence-based control programs. Key words: diagnostic, arbovirus, mosquito tiger, insecticide resistance, vector control, Europe


Sign in / Sign up

Export Citation Format

Share Document