scholarly journals Simultaneous determination of ginkgolide A, B, C, bilobalide and rutin in rat plasma by LC-MS/MS and its application to a pharmacokinetic study

Author(s):  
Bingying Hu ◽  
Yingying Sun ◽  
Min Wang ◽  
Zhisheng He ◽  
Shanshan Chen ◽  
...  

Abstract A reliable LC-MS/MS method for the determination of five bioactive constituents (bilobalide, BLL; ginkgolide A, GLA; ginkgolide B, GLB; ginkgolide C, GLC; rutin) of Ginkgo biloba leaf extracts (GBE) in rat plasma was established, fully validated and applied to an intragastric pharmacokinetic study of a preparation of GBE in rat. Samples were extracted with ethyl acetate. C18 column was selected as analytical column in this method. Mobile phase was water with 0.01% formic acid and acetonitrile. Quantification was performed in negative multiple-reaction monitoring mode. Matrix instability of terpene lactones was noticed and hydrochloric acid was used as a stabilizer. This method showed good precision and accuracy, recovery was reproducible and matrix effect was negligible. Among four terpene lactones, BLL had the highest exposure and the shortest terminal half-life, GLA and GLB had lower exposure and longer terminal half-life, the exposure of GLC was lowest and its terminal half-life was the maximum, and all of them showed rapid absorption. This study provides a reference for determination of terpene lactones and flavonol glycoside prototypes in GBE and offers pharmacokinetic data of flavonol glycoside prototype in GBE.

Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1662
Author(s):  
Wenlong Wei ◽  
Yang Yu ◽  
Xia Wang ◽  
Linhui Yang ◽  
Hang Zhang ◽  
...  

Characterization and determination of metabolites to monitor metabolic pathways play a paramount role in evaluating the efficacy and safety of medicines. However, the separation and quantification of metabolites are rather difficult due to their limited contents in vivo, especially in the case of Chinese medicine, due to its complexity. In this study, an effective and convenient method was developed to simultaneously quantify bufalin and its nine metabolites (semi-quantitation) in rat plasma after an oral administration of 10 mg/kg to rats. The prototype and metabolites that were identified were subsequently quantified using positive electrospray ionization in multiple reaction monitoring (MRM) mode with transitions of m/z 387.4→369.6 and 387.4→351.3 for bufalin, m/z 513.7→145.3 for IS, and 387.4→369.6, 419.2→365.2, and 403.2→349.2 for the main metabolites (3-epi-bufalin, dihydroxylated bufalin, and hydroxylated bufalin, respectively). The method was validated over the calibration curve range of 1.00–100 ng/mL with a limit of quantitation (LOQ) of 1 ng/mL for bufalin. No obvious matrix effect was observed, and the intra- and inter-day precisions, as well as accuracy, were all within the acceptable criteria in this method. Then, this method was successfully applied in metabolic profiling and a pharmacokinetic study of bufalin after an oral administration of 10 mg/kg to rats. The method of simultaneous determination of bufalin and its nine metabolites in rat plasma could be useful for pharmacokinetic–pharmacodynamic relationship research of bufalin, providing experimental evidence for explaining the occurrence of some adverse effects of Venenum Bufonis and its related preparations.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Zhe Wang ◽  
Le-jing Lian ◽  
Yan-yan Dong ◽  
Xiao Cui ◽  
Jian-chang Qian ◽  
...  

Anlotinib is a novel inhibitor of receptor kinase tyrosine with multitargets and has a broad spectrum of inhibitory action on tumor angiogenesis and growth. A simple and rapid UHPLC-MS/MS bioanalytical method was validated for the determination of anlotinib in rat plasma, using imatinib as an internal standard. An Acquity BEH C18 column was used to separate analytes. The eluents consisted of formic acid/water (0.1 : 100, v/v) and acetonitrile with a mobile phase. A triple quadrupole mass spectrometer was operated for the quantification with multiple reaction monitoring (MRM) to determine transitions: 408.2 ⟶ 339.1 for anlotinib, and 494.3 ⟶ 394.1 for imatinib. The validated range was 0.1–50 ng/mL for anlotinib. Mean recovery rate of anlotinib in plasma was ≥99.32% and reproducible. Also, the intra- and interday precisions were both below 15%. This robust method was successfully applied to support the pharmacokinetic study of anlotinib in rats.


2020 ◽  
Vol 58 (6) ◽  
pp. 485-493
Author(s):  
Tarun Sharma ◽  
Snehasis Jana

Abstract The aim of this study was to develop and validate a new, rapid, sensitive, selective and reliable liquid chromatography–tandem mass spectrometry method for simultaneous determination of 3-O-Acetyl-11-keto-β-boswellic acid (AKBA) and its active metabolite 3-O-Acetyl-11-hydroxy-β-boswellic acid (Ac-11-hydroxy-BA) in rat plasma. Both analytes (AKBA and Ac-11-hydroxy-BA) and the internal standard (IS, ursolic acid) were extracted from 100 μL of rat plasma by protein precipitation. Chromatographic separation was achieved on PRP-H1 RP-C18 column (75 mm × 2 mm, 1.6 μm) using acetonitrile–water (95.5 v/v) as the mobile phase. Mass detection was conducted by electrospray ionization in positive ion multiple reaction monitoring (MRM) mode. A linear dynamic range of 1–1,000 ng/mL for both AKBA and Ac-11-hydroxy-BA was established with mean correlation coefficient (r (1)) of 0.999. Intra- and inter-day precision (% CV) of analysis were found in the range of 1.9–7.4%. The accuracy determined for these analytes ranged from 92.4 to 107.2%. The extraction recoveries for both analytes ranged from 92.6 to 97.3% for spiked plasma samples and were consistent. The % change in stability samples compared to nominal concentration ranged from 0.4 to 4.2%. This method was successfully tested to a pharmacokinetic (PK) study for estimation of AKBA and acetyl-11-hydroxy-BA in rat plasma following oral administration of AKBA. This method has been validated with the advantage of shorter run time that can be used for high-throughput analysis and has been successfully applied to the pharmacokinetic study of AKBA in rats.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Wenhao Cheng ◽  
Yinghui Li ◽  
Wei Yang ◽  
Siyang Wu ◽  
Mengmeng Wei ◽  
...  

Radix Polygoni Multiflori (RPM) has been widely used to treat various diseases in Asian countries for many centuries. Although, stilbenes and anthraquinones, two major components of RPM, show various bioactive effects, it has been speculated that the idiosyncratic hepatotoxicity induced by RPM may be related to these constituents. However, information on the pharmacokinetics of stilbenes and anthraquinones at a subtoxic dose of RPM is limited. A simple and sensitive UPLC-MS/MS bioanalytical method for the simultaneous determination of 13 ingredients of RPM, including chrysophanol, emodin, aloe-emodin, rhein, physcion, questin, citreorosein, questinol, 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside, torachrysone-8-O-glucoside, chrysophanol-8-O-β-D-glucoside, emodin-8-O-β-D-glucoside, and physcion-8-O-β-D-glucoside, in rat plasma was established. Acetonitrile was employed to precipitate the plasma with appropriate sensitivity and acceptable matrix effects. Chromatographic separation was performed using a waters HSS C18 column with a gradient elution using water and acetonitrile both containing 0.025% formic acid within a run time of 9 min. The constituents were detected in negative ionization mode using multiple reaction monitoring. The method was fully validated in terms of selectivity, linearity, accuracy, precision, recovery, matrix effects, and stability. The lower limit of quantitation of the analytes was 0.1–1 ng/mL. The intrabatch and interbatch accuracies were 87.1–109%, and the precision was within the acceptable limits. The method was applied to a pharmacokinetic study after oral administration of RPM extract to rats at a subtoxic dose of 36 g/kg.


Author(s):  
Ying Xue ◽  
Ziteng Wang ◽  
Weimin Cai ◽  
Xin Tian ◽  
Shuaibing Liu

Abstract Ticagrelor is recommended for management of patients with acute coronary syndromes. Green tea is one of the most popular beverages in China and around the world. Their concomitant use is unavoidable. In this study, a selective and sensitive liquid chromatography–tandem mass spectrometry method for the simultaneous determination of plasma concentrations of ticagrelor, its two metabolites and four major constituents of tea polyphenols (TPs) in rats was developed for co-administration study of ticagrelor and TPs. Diazepam was used as internal standard (IS). Plasma samples were extracted employing a liquid–liquid extraction technique. Chromatographic separation was carried out on a Kinetex C18 column (2.1 × 75 mm, 2.6 μm) by gradient elution using 0.1% formic acid in water, acetonitrile and methanol. Seven analytes and IS were detected by a mass spectrometer with both positive and negative ionization by multiple reaction monitoring mode. The method was fully validated to be reliable and reproducible in accordance with food and drug administration (FDA) guidelines on bioanalytical method validation. The method was then successfully applied for pharmacokinetic study of ticagrelor, its two metabolites and four major constituents of TPs in rat plasma after oral administration of ticagrelor and tea polyphenol extracts.


Author(s):  
Shixing Zhu ◽  
Jiayuan Zhang ◽  
Zhihua Lv ◽  
Mingming Yu

Background: Apigenin, a natural plant flavone, has been shown to possess a variety of biological properties. Objective: In this report, a highly selective and sensitive LC-MS/MS method was developed and validated for the determination of apigenin in rat plasma. Methods: Analysts were separated on the HSS T3 column (1.8 μm 2.1×100 mm) using acetonitrile and 0.1% formic acid in 2 mM ammonium acetate buffer at a supply rate of 0.200 mL/min as eluent in gradient model. Results: Plasma samples were treated by protein precipitation using acetonitrile for the recovery ranging from 86.5% to 90.1% for apigenin. The calibration curves followed linearity in the concentration range of 0.50-500 ng/mL. The inter-day and intra-day precisions at different QC levels within 13.1% and the accuracies ranged from -10.6% to 8.6%. Conclusion: The assay has been successfully applied to the pharmacokinetic study of apigenin in rats.


2021 ◽  
Author(s):  
Zhen‐miao Qin ◽  
Yong‐hui Li ◽  
Yin‐feng Tan ◽  
Hai‐long Li

Sign in / Sign up

Export Citation Format

Share Document