scholarly journals Combined effects of acute exercise and hypoxia on memory

2020 ◽  
Vol 107 (2) ◽  
pp. 337-348
Author(s):  
M. Jung ◽  
I. Brizes ◽  
S. Wages ◽  
P. Ponce ◽  
M. Kang ◽  
...  

AbstractNo previous studies have evaluated the potential combined effects of acute exercise and acute hypoxia exposure on memory function, which was the purpose of this study. Twenty-five participants (Mage = 21.2 years) completed two laboratory visits in a counterbalanced order, involving 1) acute exercise (a 20-min bout of moderate-intensity exercise) and then 30 min of exposure to hypoxia (FIO2 = 0.12), and 2) exposure to hypoxia alone (FIO2 = 0.12) for 30 min. Following this, participants completed a cued-recall and memory interference task (AB/AC paradigm), assessing cued-recall memory (recall 1 and recall 2) and memory interference (proactive and retroactive interference). For cued-recall memory, we observed a significant main effect for condition, with Exercise + Hypoxia condition having significantly greater cued-recall performance than Hypoxia alone. Memory interference did not differ as a function of the experimental condition. This experiment demonstrates that engaging in an acute bout of exercise prior to acute hypoxia exposure had an additive effect in enhancing cued-recall memory performance.

2021 ◽  
pp. 003151252199370
Author(s):  
Lindsay K. Crawford ◽  
Jeremy B. Caplan ◽  
Paul D. Loprinzi

This study evaluated whether the timing of acute exercise can attenuate a memory interference effect. Across two experiments, participants completed an AB/AC memory task. Participants studied eight word pairs; four denoted AB (e.g., Hero – Apple) and four control (DE) pairs. Following this List 1, participants studied eight additional word pairs (List 2); four denoted AC, re-using words from the AB pairs (e.g., Hero – Project) and four control (FG) pairs. Following their study of both lists, participants completed a cued recall assessment. In Experiment 1 (N = 100), an acute exercise bout occurred before the AB/AC memory interference task, and the participants’ three lab visits (successive conditions) were control, moderate-intensity (50% HRR; heart rate reserve) exercise, and vigorous-intensity (80% HRR) exercise. In Experiment 2 (N = 68), the acute exercise occurred between List 1 and List 2, and the participants’ two lab visits (successive conditions) were a (80% HRR) vigorous-intensity exercise visit and a control visit. Across both experiments, we observed evidence of both proactive and retroactive interference ( p < .05), but acute exercise, regardless of intensity, did not attenuate this interference ( p > .05). Acute moderate-intensity exercise was better than control or vigorous-intensity exercise in enhancing associative memory ( p < .05), independent of interference. In Experiment 2, vigorous intensity exercise was associated with more pronounced interference ( p < .05). Our results suggest that acute exercise can enhance associative memory performance, with no attenuation of interference by exercise.


Psych ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 290-305 ◽  
Author(s):  
Lindsay Crawford ◽  
Paul Loprinzi

The improvement of memory performance is an ever-growing interest in research, with implications in many fields. Thus, identifying strategies to enhance memory and attenuate memory interference is of great public health and personal interest. The objective of this paper was to evaluate the role of intensity-specific acute exercise on improving paired-associative memory function and attenuating memory interference. A counterbalanced, randomized controlled, within-subject experimental design was employed. The three counterbalanced visits included a control visit, moderate-intensity exercise (50% of HRR; heart rate reserve) and vigorous-intensity exercise (80% of HRR), all of which occurred prior to the memory assessment. To evaluate memory interference, an AB/AC paired-associative task was implemented for each laboratory visit. The number of correctly recalled words from List 1 (AB–DE) was statistically significantly (F = 4.63, p = 0.01, η2p = 0.205) higher for the vigorous-intensity condition (M = 6.53, SD = 1.54) as compared to moderate-intensity (M = 6.11, SD = 1.59) and control (M = 5.00, SD = 2.56) conditions. No statistical significance was found between proactive interference or retroactive interference across the experimental conditions. This experiment provides evidence for an intensity-specific effect of acute exercise on short-term, paired-associative memory, but not memory interference.


2019 ◽  
Vol 9 (2) ◽  
pp. 99-104 ◽  
Author(s):  
Lauren Johnson ◽  
Paul D. Loprinzi

Background: The objective of this study was to evaluate potential sex-specific differences on episodic memory function and determine whether sex moderates the effects of acute exercise on episodic memory.Methods: A randomized controlled intervention was employed. This experiment was conducted among young University students (mean age = 21 years). Both males (n=20) and females (n=20)completed two counterbalanced laboratory visits, with one visit involving a 15-minute bout of moderate-intensity exercise prior to the memory task. The control visit engaged in a time matched seated task. Memory function (including short-term memory, learning, and long-term memory) was assessed from the RAVLT (Rey Auditory Verbal Learning Test).Results: We observed a significant main effect for time (P<0.001, ƞ2p= 0.77) and a marginally significant main effect for sex (P=0.06, ƞ2p= 0.09), but no time by sex by condition interaction(P=0.91, ƞ2p= 0.01). We also observed some suggestive evidence of a more beneficial effect of acute exercise on memory for females. Conclusion: In conclusion, females outperformed males in verbal memory function. Additional research is needed to further evaluate whether sex moderates the effects of acute exercise on memory function.


2019 ◽  
Vol 34 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Paul D. Loprinzi ◽  
Emily Frith ◽  
Lindsay Crawford

Purpose: Retroactive interference involves the disruption of previously encoded information from newly learned information and thus may impair the consolidation of long-term memory. The objective of this study was to evaluate whether acute exercise can attenuate retroactive memory interference. Design: Three experimental studies were employed. Experiment 1 employed a between-subject randomized control trial (RCT) involving moderate-intensity walking (15 minutes). Experiment 2 employed a between-subject RCT involving high-intensity jogging (15 minutes). Experiment 3 employed a within-subject RCT involving moderate-intensity walking (15 minutes). Setting: University setting. Participants: One hundred twelve young adults. Measures: After exercise, memory interference was evaluated from an episodic word-list memory task, involving the recall of 2 word lists. Results: The pooled effect size (standard difference in means: −0.35; 95% confidence interval: −0.64 to −0.06) across the 3 experiments was statistically significant ( P = .01). Conclusion: We provide suggestive evidence that acute, short-duration exercise may help attenuate a retroactive memory interference effect. Implications of these findings for exercise to improve memory and attenuate memory decay are discussed.


2019 ◽  
Vol 15 (4) ◽  
pp. 700-716
Author(s):  
Paul D. Loprinzi ◽  
Morgan Gilbert ◽  
Gina Robinson ◽  
Briahna Dickerson

Emerging work suggests that acute exercise can enhance explicit memory function. Minimal research, however, has examined whether acute exercise is associated with implicit memory, which was the purpose of this study. Three separate experimental studies were computed (N = 120; Mean age = 21). In Experiment 1, participants were randomly assigned to either a moderate-intensity bout of acute exercise (15-minute) or engaged in a seated control task (15-minute), followed by the completion of a word-fragmentation implicit memory task. Experiment 2 replicated Experiment 1, but instead employed a higher-intensity exercise protocol. For Experiment 3, participants were randomly assigned to either a moderate-intensity bout of acute exercise (15-minute) or engaged in a seated control task (15-minute), followed by the completion of a real world, 3-dimensional implicit memory task. For Experiment 1, the exercise and control groups, respectively, had an implicit memory score of 7.0 (0.5) and 7.5 (0.6) (t(38) = 0.67, p = .51). For Experiment 2, the exercise and control groups, respectively, had an implicit memory score of 6.9 (1.9) and 7.8 (2.4) (t(38) = 1.27, p = .21). These findings suggest that exercise, and the intensity of exercise, does not alter implicit memory from a word fragmentation task. For Experiment 3, the exercise and control groups, respectively, had a discrimination implicit memory index score of 0.48 (0.18) and 0.29 (0.32) (t(38) = 2.16, p = .03). In conclusion, acute exercise does not influence a commonly used laboratory-based assessment of implicit memory but may enhance real world-related implicit memory function.


Medicina ◽  
2019 ◽  
Vol 55 (9) ◽  
pp. 568 ◽  
Author(s):  
Paul Loprinzi ◽  
Faith Harris ◽  
Kyle McRaney ◽  
Morgan Chism ◽  
Raymond Deming ◽  
...  

Background and Objectives: Long-term potentiation (LTP), the functional connectivity among neurons, is considered a mechanism of episodic memory. Both acute exercise and learning are thought to influence memory via an LTP-related mechanism. Limited research has evaluated the individual and combined effects of acute exercise and learning strategy implementation (e.g., 3-R technique, cue-integration) on memory, which was the purpose of this study. Materials and Methods: For Experiment 1, participants (n = 80; Mage = 20.9 years) were randomized into one of four experimental groups, including Exercise + Learning (E + L), Learning Only (L), Exercise Only (E), and Control Group (C; no exercise and no learning strategy implementation). The exercise stimulus involved an acute 15-min bout of lower-intensity (60% of heart rate max) walking exercise and the learning strategy involved the implementation of the 3-R technique. Experiment 2 (n = 77; Mage = 21.1 years) replicated Experiment 1 but addressed limitations (e.g., exposure level of the memory task) from Experiment 1 and employed a higher-intensity bout of exercise (77% of heart rate max). Experiment 3 (n = 80; Mage = 21.0 years) evaluated these same four experimental conditions but employed a cue-integration learning strategy and a moderate-intensity bout of acute exercise (64% of heart rate max). Results: These three experiments demonstrate that both learning techniques were effective in enhancing memory and we also provided evidence of a main effect for acute exercise (Experiment 3). However, we did not observe consistent evidence of a learning by exercise interaction effect. Conclusions: We demonstrate that both acute exercise and different learning techniques are effective in enhancing long-term memory function.


2019 ◽  
Vol 9 (11) ◽  
pp. 323
Author(s):  
Paul D. Loprinzi ◽  
Aala’a Matalgah ◽  
Lindsay Crawford ◽  
Jane J. Yu ◽  
Zhaowei Kong ◽  
...  

Purpose: Previous research has evaluated the effects of acute hypoxia exposure on cognitive function, notably executive function. No studies, to date, have evaluated the effects of acute hypoxia exposure on memory interference, which was the purpose of this experiment. Methods: A within-subjects, counterbalanced experimental design was employed, with condition (hypoxia vs. normoxia) and time (immediate vs. delayed) being the independent variables. Participants (N = 21; Mage = 21.0 years) completed two laboratory visits, involving 30 min of exposure to either hypoxia (FIO2 = 0.12) or normoxia (FIO2 = 0.21). Following this, they completed a memory interference task (AB/AC paradigm), assessing immediate and delayed proactive and retroactive interference. Results: For retroactive interference, we observed a significant main effect for condition, F(1, 20) = 5.48, p = 0.03, ƞ2 = 0.10, condition by time interaction, F(1, 20) = 4.96, p = 0.03, ƞ2 = 0.01, but no main effect for time, F(1, 20) = 1.75, p = 0.20, ƞ2 = 0.004. Conclusion: Our results demonstrate that acute hypoxia exposure was facilitative in reducing memory interference. We discuss these findings in the context of the potential therapeutic effects of acute hypoxia exposure on synaptic plasticity.


2018 ◽  
Vol 122 (5) ◽  
pp. 1744-1754 ◽  
Author(s):  
James T. Haynes ◽  
Emily Frith ◽  
Eveleen Sng ◽  
Paul D. Loprinzi

Our previous work employing a between-subject randomized controlled trial design suggests that exercising prior to memory encoding is more advantageous in enhancing retrospective episodic memory function when compared to exercise occurring during or after memory encoding. The present experiment evaluates this potential temporal effect of acute exercise on memory function while employing a within-subject, counterbalanced design. In a counterbalanced order (via Latin squares), 24 participants completed four visits including (1) exercising (moderate-intensity walking) prior to memory encoding, (2) exercising during memory encoding, (3) exercising after memory encoding, and (4) a control visit (no exercise). Retrospective memory function (short term and long term; 24-hour follow-up) was assessed from a multitrial word list. Prospective memory was assessed from a time-based task. Compared to all other visits, short-term memory was greater in the visit that involved exercising prior to memory encoding (F = 3.76; P = .01; η2 = .79). Similar results occurred for long-term memory, with no significant effects for prospective memory performance. We provide robust evidence demonstrating that acute moderate-intensity exercise prior to memory encoding is optimal in enhancing short-term and long-term memory function when compared to no exercise as well as exercising during and after memory encoding.


Medicina ◽  
2019 ◽  
Vol 55 (7) ◽  
pp. 331 ◽  
Author(s):  
Johnson ◽  
Crawford ◽  
Zou ◽  
Loprinzi

Background and Objectives: The objective of this experiment was to evaluate the effects of acute exercise on memory interference and determine if this potential relationship is moderated by sex. Materials and Methods: A randomized controlled experiment was conducted (N = 40), involving young adult males (n = 20) and females (n = 20) completing two counterbalanced visits (exercise and no exercise). The exercise visit involved an acute (15 min), moderate-intensity bout of treadmill exercise, while the control visit involved a time-matched seated task. Memory interference, including both proactive interference and retroactive interference, involved the completion of a multi-trial memory task. Results: In a factorial ANOVA with the outcome being List B, there was a main effect for condition (F(1,38) = 5.75, P = 0.02, n2p = 0.13), but there was no main effect for sex (F(1,38) = 1.39, P = 0.24, n2p = 0.04) or sex by condition interaction (F(1,38) = 1.44, P = 0.23, n2p = 0.04). Conclusion: In conclusion, acute moderate-intensity exercise was effective in attenuating a proactive memory interference effect. This effect was not moderated by biological sex.


Medicina ◽  
2019 ◽  
Vol 55 (8) ◽  
pp. 445 ◽  
Author(s):  
Paul D. Loprinzi ◽  
Sierra Day ◽  
Raymond Deming

Background and Objective: The transient hypofrontality hypothesis predicts that memory function will be impaired during high-intensity exercise, as a result of a need for metabolic and cognitive resources to be allocated toward sustaining movement, as opposed to performing a cognitive task. The purpose of these experiments was to evaluate this transient hypofrontality hypothesis. Materials and Methods: Experiment 1 involved participants (n = 24; Mage = 21.9 years) completing four counterbalanced visits. Two visits evaluated working memory function, either at rest or during a high-intensity bout of acute exercise. The other two visits evaluated episodic memory function, either at rest or during a high-intensity bout of acute exercise. Experiment 2 (n = 24; Mage = 20.9 years) extended Experiment 1 by evaluating memory function (working memory) across 4 counterbalanced conditions, including at rest and during light (30% of heart rate reserve; HRR), moderate (50% HRR) and high-intensity (80% HRR) acute exercise. Results: Experiment 1 demonstrated that, when compared to rest, both working memory and episodic memory were impaired during high-intensity acute exercise. Experiment 2 replicated this effect, but then also showed that, unlike high-intensity acute exercise, memory function was not impaired during low- and moderate-intensity acute exercise. Conclusions: Our experiments provide support for the transient hypofrontality hypothesis. Both working memory and episodic memory are impaired during high-intensity acute exercise. Working memory does not appear to be impaired during lower exercise intensities.


Sign in / Sign up

Export Citation Format

Share Document