scholarly journals Effects of Intensity-Specific Acute Exercise on Paired-Associative Memory and Memory Interference

Psych ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 290-305 ◽  
Author(s):  
Lindsay Crawford ◽  
Paul Loprinzi

The improvement of memory performance is an ever-growing interest in research, with implications in many fields. Thus, identifying strategies to enhance memory and attenuate memory interference is of great public health and personal interest. The objective of this paper was to evaluate the role of intensity-specific acute exercise on improving paired-associative memory function and attenuating memory interference. A counterbalanced, randomized controlled, within-subject experimental design was employed. The three counterbalanced visits included a control visit, moderate-intensity exercise (50% of HRR; heart rate reserve) and vigorous-intensity exercise (80% of HRR), all of which occurred prior to the memory assessment. To evaluate memory interference, an AB/AC paired-associative task was implemented for each laboratory visit. The number of correctly recalled words from List 1 (AB–DE) was statistically significantly (F = 4.63, p = 0.01, η2p = 0.205) higher for the vigorous-intensity condition (M = 6.53, SD = 1.54) as compared to moderate-intensity (M = 6.11, SD = 1.59) and control (M = 5.00, SD = 2.56) conditions. No statistical significance was found between proactive interference or retroactive interference across the experimental conditions. This experiment provides evidence for an intensity-specific effect of acute exercise on short-term, paired-associative memory, but not memory interference.

2021 ◽  
pp. 003151252199370
Author(s):  
Lindsay K. Crawford ◽  
Jeremy B. Caplan ◽  
Paul D. Loprinzi

This study evaluated whether the timing of acute exercise can attenuate a memory interference effect. Across two experiments, participants completed an AB/AC memory task. Participants studied eight word pairs; four denoted AB (e.g., Hero – Apple) and four control (DE) pairs. Following this List 1, participants studied eight additional word pairs (List 2); four denoted AC, re-using words from the AB pairs (e.g., Hero – Project) and four control (FG) pairs. Following their study of both lists, participants completed a cued recall assessment. In Experiment 1 (N = 100), an acute exercise bout occurred before the AB/AC memory interference task, and the participants’ three lab visits (successive conditions) were control, moderate-intensity (50% HRR; heart rate reserve) exercise, and vigorous-intensity (80% HRR) exercise. In Experiment 2 (N = 68), the acute exercise occurred between List 1 and List 2, and the participants’ two lab visits (successive conditions) were a (80% HRR) vigorous-intensity exercise visit and a control visit. Across both experiments, we observed evidence of both proactive and retroactive interference ( p < .05), but acute exercise, regardless of intensity, did not attenuate this interference ( p > .05). Acute moderate-intensity exercise was better than control or vigorous-intensity exercise in enhancing associative memory ( p < .05), independent of interference. In Experiment 2, vigorous intensity exercise was associated with more pronounced interference ( p < .05). Our results suggest that acute exercise can enhance associative memory performance, with no attenuation of interference by exercise.


2020 ◽  
Vol 107 (2) ◽  
pp. 337-348
Author(s):  
M. Jung ◽  
I. Brizes ◽  
S. Wages ◽  
P. Ponce ◽  
M. Kang ◽  
...  

AbstractNo previous studies have evaluated the potential combined effects of acute exercise and acute hypoxia exposure on memory function, which was the purpose of this study. Twenty-five participants (Mage = 21.2 years) completed two laboratory visits in a counterbalanced order, involving 1) acute exercise (a 20-min bout of moderate-intensity exercise) and then 30 min of exposure to hypoxia (FIO2 = 0.12), and 2) exposure to hypoxia alone (FIO2 = 0.12) for 30 min. Following this, participants completed a cued-recall and memory interference task (AB/AC paradigm), assessing cued-recall memory (recall 1 and recall 2) and memory interference (proactive and retroactive interference). For cued-recall memory, we observed a significant main effect for condition, with Exercise + Hypoxia condition having significantly greater cued-recall performance than Hypoxia alone. Memory interference did not differ as a function of the experimental condition. This experiment demonstrates that engaging in an acute bout of exercise prior to acute hypoxia exposure had an additive effect in enhancing cued-recall memory performance.


Medicina ◽  
2019 ◽  
Vol 55 (7) ◽  
pp. 331 ◽  
Author(s):  
Johnson ◽  
Crawford ◽  
Zou ◽  
Loprinzi

Background and Objectives: The objective of this experiment was to evaluate the effects of acute exercise on memory interference and determine if this potential relationship is moderated by sex. Materials and Methods: A randomized controlled experiment was conducted (N = 40), involving young adult males (n = 20) and females (n = 20) completing two counterbalanced visits (exercise and no exercise). The exercise visit involved an acute (15 min), moderate-intensity bout of treadmill exercise, while the control visit involved a time-matched seated task. Memory interference, including both proactive interference and retroactive interference, involved the completion of a multi-trial memory task. Results: In a factorial ANOVA with the outcome being List B, there was a main effect for condition (F(1,38) = 5.75, P = 0.02, n2p = 0.13), but there was no main effect for sex (F(1,38) = 1.39, P = 0.24, n2p = 0.04) or sex by condition interaction (F(1,38) = 1.44, P = 0.23, n2p = 0.04). Conclusion: In conclusion, acute moderate-intensity exercise was effective in attenuating a proactive memory interference effect. This effect was not moderated by biological sex.


2021 ◽  
pp. 174702182110698
Author(s):  
Paul D. Loprinzi ◽  
Brandon Rigdon ◽  
Amir-Homayoun Javadi ◽  
William Kelemen

Prior research suggests that behavioral (e.g., exercise) and psychological factors (e.g., metamemory; monitoring and control of one’s memory processes) may influence memory function. However, there is conflicting results on the optimal intensity of acute exercise to enhance memory and whether acute exercise can also enhance metamemory. Further, very limited research has evaluated whether acute exercise can influence source episodic memory. The objective of this study was to evaluate whether there is an intensity-specific effect of acute aerobic exercise on source episodic memory and metamemory accuracy. Thirty young adults participated in a three condition (Control/Moderate/Vigorous-Intensity Exercise), within-subject counterbalanced experimental study. After each intervention, participants completed source episodic memory and metamemory tasks. Results demonstrated that acute exercise, relative to control, was effective in enhancing source episodic memory, but not metamemory accuracy. Vigorous-intensity acute exercise was the most optimal intensity to enhance source episodic memory. Overall, our findings suggest that there is an intensity-specific effect of acute exercise on source episodic memory. Further, when exercise-related improvements in memory occur, young adults may be unaware of these memory benefits from exercise.


2019 ◽  
Vol 43 (6) ◽  
pp. 1016-1029
Author(s):  
Paul D. Loprinzi ◽  
Lauren Koehler ◽  
Emily Frith ◽  
Pamela Ponce ◽  
Dylan Delancey ◽  
...  

Objective: In this study, we evaluated whether exercise prior to memory encoding or during memory consolidation can influence episodic memory function after being exposed to a stressful environment. Methods: We conducted 3 between-group randomized controlled experiments among young adults. We assessed episodic memory (via logic memory task) at the beginning of the experiment and approximately 45 minutes later. Across the 3 experiments, we varied the temporal period (eg, before memory encoding or during consolidation) of the acute bout of exercise (15-minute moderate-intensity exercise) and psychological stress induction. Results: Across all 3 experiments there was a statistically significant main effect for time for memory function, but there were no time x group interaction effects. Conclusion: Memory declined across the 2 assessment periods, but for all 3 experiments, exercise was not associated with memory function after being exposed to a stressful stimulus.


2018 ◽  
Vol 3 (2) ◽  
pp. 484-487
Author(s):  
Santosh Kumar Deo ◽  
Kopila Agrawal ◽  
Prem Bhattrai ◽  
Raju Kumar Chaudhary

Introduction: Working memory is a kind of short term memory important for reasoning and guiding decision-making and behavioral process.Objective: The goal of the present research was to study the outcome of single bout of acute moderate-intensity exercise on working memory.Methodology: Twenty two male subjects were asked to perform working memory task by 2n back task in baseline resting, immediately after exercise and after five minute of exercise session. 3 minute step test procedure was used as a moderate intensity exercise intervention.Results: The percentage correctness of 2n back task of working memory was found to be 64.36% for baseline resting condition, 78.01 % for immediately after 3-minute step test and 80.70% for 5 minute after the exercise. In both exercise session (i.e. immediately after exercise and after 5 minute of exercise), significant improvement (p value <0.05) in working memory was seen as compared to the baseline resting session while no such significant beneficial improvement was seen when compared between immediately after exercise and after 5 minute of exercise.Conclusion: Improvement in working memory after moderate exercise intervention was seen, which is important for learning and memory and decision-making.  BJHS 2018;3(2)6:484-487.


2018 ◽  
Vol 7 (12) ◽  
pp. 486 ◽  
Author(s):  
Breanna Wade ◽  
Paul Loprinzi

Emerging work suggests that acute, moderate-intensity aerobic exercise may help to subserve episodic memory of neutral stimuli. Less investigated, however, is whether acute exercise is associated with enhanced memory recognition of emotional stimuli, which was the purpose of this experiment. A parallel-group randomized controlled experiment was employed. Participants (mean age = 20 yr) were randomized into an exercise (n = 17) or control group (n = 17). The exercise group engaged in a 15-min bout of moderate-intensity treadmill walking. Emotional memory recognition was assessed via images from the International Affective Picture System, including assessments of varying degrees of valence and arousal. Memory recognition was assessed at 1 day, 7 days, and 14 days post-memory encoding. We observed a significant main effect for time (F(2) = 104.2, p < 0.001, η2p = 0.77) and a significant main effect for valence–arousal classification (F(4) = 21.39, p < 0.001, η2p = 0.40), but there was no significant time by group interaction (F(2) = 1.09, p = 0.34, η2p = 0.03), classification by group interaction (F(4) = 0.12, p = 0.97, η2p = 0.01), time by classification interaction (F(8) = 1.78, p = 0.08, η2p = 0.05), or time by classification by group interaction (F(8) = 0.78, p = 0.62, η2p = 0.02). In conclusion, emotional memory recognition decreased over the 14-day follow-up period and this rate of memory decay was not altered by acute moderate-intensity exercise engagement. We discuss these findings in the context of exercise intensity and the temporal effects of exercise.


2020 ◽  
Vol 9 (2) ◽  
pp. 310-315
Author(s):  
Cornelius Coli ◽  
Gadis Meinar Sari ◽  
Purwo Sri Rejeki

This study aims to analyze acute moderate intensity exercise decreases oxygen saturation in obese women. True experiment with a randomized control group design posttest-only design using 14 obese women aged 19-24 years, body mass index 27-33 kg/m2, percentage body fat (PBF) above 30 % and fasting blood glucose (FBG) below 100 mg/dL, normal hemoglobin, normal systolic and diastolic blood pressure, normal resting heart rate and randomly divided into two groups, namely CON (n=7, control without intervention) and MIE (n=7, moderate intensity exercise). Moderate intensity exercise interventions carried out for 40 minutes using a treadmill. Blood sampling is done 10 minutes after the intervention. Measurement of oxygen saturation using a Pulse Oximeter. The results obtained mean oxygen saturation at CON (98.428±0.534) % and MIE (96.571±0.975) % (p=0.001). Based on the results of the study concluded that moderate moderate intensity acute exercise reduces oxygen saturation in obese women.


2019 ◽  
Vol 9 (2) ◽  
pp. 99-104 ◽  
Author(s):  
Lauren Johnson ◽  
Paul D. Loprinzi

Background: The objective of this study was to evaluate potential sex-specific differences on episodic memory function and determine whether sex moderates the effects of acute exercise on episodic memory.Methods: A randomized controlled intervention was employed. This experiment was conducted among young University students (mean age = 21 years). Both males (n=20) and females (n=20)completed two counterbalanced laboratory visits, with one visit involving a 15-minute bout of moderate-intensity exercise prior to the memory task. The control visit engaged in a time matched seated task. Memory function (including short-term memory, learning, and long-term memory) was assessed from the RAVLT (Rey Auditory Verbal Learning Test).Results: We observed a significant main effect for time (P<0.001, ƞ2p= 0.77) and a marginally significant main effect for sex (P=0.06, ƞ2p= 0.09), but no time by sex by condition interaction(P=0.91, ƞ2p= 0.01). We also observed some suggestive evidence of a more beneficial effect of acute exercise on memory for females. Conclusion: In conclusion, females outperformed males in verbal memory function. Additional research is needed to further evaluate whether sex moderates the effects of acute exercise on memory function.


2019 ◽  
Vol 126 (1) ◽  
pp. 102-110 ◽  
Author(s):  
Corinna Serviente ◽  
Amy Burnside ◽  
Sarah Witkowski

Endothelial microparticles (EMPs) are related to cardiovascular disease (CVD) risk. Risk factors for CVD increase with menopause, and greater cardiorespiratory fitness is generally expected to reduce CVD risk. The effects of habitual physical activity on endothelial health may be due in part to the effect of acute exercise on circulating EMPs. This study was performed to evaluate the effect of an acute bout of exercise on CD62E+ and CD31+/42b− EMPs in healthy fit midlife women at different menopausal stages. Healthy, active premenopausal (PRE), perimenopausal (PERI), and postmenopausal (POST) women completed a single bout of moderate-intensity treadmill exercise. Activated (CD62E+) and apoptotic (CD31+/42b−) EMPs were evaluated before and 30 min after exercise by using fluorescent activated cell sorting. In an exploratory analysis, these results were compared with data from low-fit peri- and postmenopausal women. Differences by group and time point were evaluated with repeated-measure ANOVAs. There was a reduction in the number of total microparticles ( P < 0.001), CD62E+ ( P = 0.003), and CD31+/42b− ( P < 0.001) EMPs/μl plasma following acute exercise. The percentage of CD62E+ EMPs increased with acute exercise ( P < 0.001), whereas the percentage of CD31+/42b− EMPs did not change ( P = 0.40). There was no effect of menopausal status on CD62E+or CD31+/42b− EMPs, or on total microparticles (all P > 0.05). The exploratory analysis revealed that low-fit women had similar changes in EMPs with acute exercise. We concluded that acute moderate-intensity exercise reduces CD62E+and CD31+/42b− EMPs, as well as total microparticles, in healthy midlife women. These effects occurred despite differences in menopausal status and fitness. NEW & NOTEWORTHY This study demonstrates that acute moderate-intensity exercise reduces activated and apoptotic endothelial microparticles in healthy midlife women.


Sign in / Sign up

Export Citation Format

Share Document