scholarly journals Human Gait Cycle Analysis Using Kinect V2 Sensor

2020 ◽  
Vol 15 (3) ◽  
pp. 3-14
Author(s):  
Péter Müller ◽  
Ádám Schiffer

Examining a human movement can provide a wealth of information about a patient’s medical condition. The examination process can be used to diagnose abnormal changes (lesions), ability development and monitor the rehabilitation process of people with reduced mobility. There are several approaches to monitor people, among other things with sensors and various imaging and processing devices. In this case a Kinect V2 sensor and a self-developed LabView based application was used, to examine the movement of the lower limbs. The ideal gait pattern was recorded in the RoboGait training machine and the measured data was used to identify the phases of the human gait. During the evaluation, the position of the skeleton model, the associated body joints and angles can be calculated. The pre-recorded ideal and natural gait cycle can be compared.With the self-developed method the pre-recorded ideal and natural gait cycle can be compared and processed for further evaluation. The evaluated measurement data confirm that a reliable and mobile solution for gait analysis has been created.

2021 ◽  
Author(s):  
Peter Müller ◽  
Ádam Schiffer

AbstractThe examination of the human gait cycle can be useful for physiotherapists for identifying and/or predicting body motion disorders and it provides important data about the patient's condition in many ways. In this paper, the progress of a special TheraSuit physiotherapy treatment of a child, who has reduced mobility due to cerebral palsy, has been investigated. Generally, this type of disorder is classified into strict levels and the effectiveness of the therapy is expressed by changing between distinct levels. On the other hand paper describes a new markerless self-developed movement analysis system, which is able to show the effectiveness of the treatment with quantitative parameters. These parameters are determined by statistical methods.


Author(s):  
Karla A. Camarillo–Gómez ◽  
Gerardo I. Pérez-Soto ◽  
Luis A. Torres-Rico

In this paper, a lower limb orthosis is proposed to form the human gait neuromuscular patterns in patients with myelomeningocele. The orthosis has two lower limbs of 2–DOF each which reduces the motion of the hip and knee to the sagittal plane. The orthosis are assembled in a back support which also supports the patients weight. The control system for the orthosis allows to reproduce in a repetitive, controlled and autonomous way the human gait cycle at different velocities according to the patient requirements; so that, the neuromuscular patterning can be supervised by a therapist. The development of these orthosis seeks to improve the quality of life of those infants with myelomenigocele and to introduce a lower cost Mexican technology with Mexican anthropometric dimensions.


2021 ◽  
Vol 15 ◽  
Author(s):  
Joyce B. Weersink ◽  
Natasha M. Maurits ◽  
Bauke M. de Jong

BackgroundWalking is characterized by stable antiphase relations between upper and lower limb movements. Such bilateral rhythmic movement patterns are neuronally generated at levels of the spinal cord and brain stem, that are strongly interconnected with cortical circuitries, including the Supplementary Motor Area (SMA).ObjectiveTo explore cerebral activity associated with multi-limb phase relations in human gait by manipulating mutual attunement of the upper and lower limb antiphase patterns.MethodsCortical activity and gait were assessed by ambulant EEG, accelerometers and videorecordings in 35 healthy participants walking normally and 19 healthy participants walking in amble gait, where upper limbs moved in-phase with the lower limbs. Power changes across the EEG frequency spectrum were assessed by Event Related Spectral Perturbation analysis and gait analysis was performed.ResultsAmble gait was associated with enhanced Event Related Desynchronization (ERD) prior to and during especially the left swing phase and reduced Event Related Synchronization (ERS) at final swing phases. ERD enhancement was most pronounced over the putative right premotor, right primary motor and right parietal cortex, indicating involvement of higher-order organization and somatosensory guidance in the production of this more complex gait pattern, with an apparent right hemisphere dominance. The diminished within-step ERD/ERS pattern in amble gait, also over the SMA, suggests that this gait pattern is more stride driven instead of step driven.ConclusionIncreased four-limb phase complexity recruits distributed networks upstream of the primary motor cortex, primarily lateralized in the right hemisphere. Similar parietal-premotor involvement has been described to compensate impaired SMA function in Parkinson’s disease bimanual antiphase movement, indicating a role as cortical support regions.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2447 ◽  
Author(s):  
Karalikkadan Ashhar ◽  
Mohammad Khyam ◽  
Cheong Soh ◽  
Keng Kong

Ranging based on ultrasonic sensors can be used for tracking wearable mobile nodes accurately for a long duration and can be a cost-effective method for human movement analysis in rehabilitation clinics. In this paper, we present a Doppler-tolerant ultrasonic multiple access localization system to analyze gait parameters in human subjects. We employ multiple access methods using linear chirp wave-forms and narrow-band piezoelectric transducers. A Doppler shift compensation Technique is also incorporated without compromising on the tracking accuracy. The system developed was used for tracking the trajectory of both lower limbs of five healthy adults during a treadmill walk. An optical motion capture system was used as the reference to compare the performance. The average Root Mean Square Error values between the 3D coordinates estimated from the proposed system and the reference system while tracking both lower limbs during treadmill walk experiment by 5 subjects were found to be 16.75, 14.68 and 20.20 mm respectively along X, Y and Z-directions. Errors in the estimation of spatial and temporal parameters from the proposed system were also quantified. These promising results show that narrowband ultrasonic sensors can be utilized to accurately track more than one mobile node for human gait analysis.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3242
Author(s):  
Sergio D. Sierra M ◽  
Marcela Múnera ◽  
Thomas Provot ◽  
Maxime Bourgain ◽  
Carlos A. Cifuentes

Smart walkers are commonly used as potential gait assistance devices, to provide physical and cognitive assistance within rehabilitation and clinical scenarios. To understand such rehabilitation processes, several biomechanical studies have been conducted to assess human gait with passive and active walkers. Several sessions were conducted with 11 healthy volunteers to assess three interaction strategies based on passive, low and high mechanical stiffness values on the AGoRA Smart Walker. The trials were carried out in a motion analysis laboratory. Kinematic data were also collected from the smart walker sensory interface. The interaction force between users and the device was recorded. The force required under passive and low stiffness modes was 56.66% and 67.48% smaller than the high stiffness mode, respectively. An increase of 17.03% for the hip range of motion, as well as the highest trunk’s inclination, were obtained under the resistive mode, suggesting a compensating motion to exert a higher impulse force on the device. Kinematic and physical interaction data suggested that the high stiffness mode significantly affected the users’ gait pattern. Results suggested that users compensated their kinematics, tilting their trunk and lower limbs to exert higher impulse forces on the device.


2022 ◽  
Vol 1 (2) ◽  
pp. 65-72
Author(s):  
Ade Reza Ismawan ◽  
Rifky Ismail ◽  
Tony Prahasto ◽  
Mochammad Ariyanto ◽  
Budi Setiyana

Transtibial and transfemoral amputations are the most common amputations in the world, loss of lower extremity result in impaired function extremities and also body balance. A prosthesis is a medical device designed to replace a specific body part to restore function to a body part lost due to an accident or disease. Most doctors strongly recommend the use of a prosthesis so that patients can return to normal activities after undergoing an amputation. Besides functioning to support beauty, the use of prostheses is also to restore the quality of life of prosthetic users, the issue of metabolic energy consumption when walking is also very important in designing transtibial bionic prosthesis because it involves the comfort of the user transtibial prosthesis. Most of the existing transtibial prosthesis products in Indonesia are conventional passive transtibial foot products, and passive prosthesis users show a limp or asymmetrical gait pattern so that conventional passive prosthesis users experience discomfort when walking in the form of pain in the amputated leg and normal foot, which can cause secondary musculoskeletal injuries such as joint disorders. Passive prostheses cannot generate propulsive force during push-off phase (terminal stance and preswing) of the human gait cycle. The use of passive prostheses can also consume 20-30% more metabolic energy while walking so that it can cause fatigue for the user. Transtibial bionic prosthesis research is growing, transtibial bionic prosthesis can overcome the weakness of passive prosthesis because it can produce push-off during gait cycle and several researchers have shown that bionic prostheses are capable of mimicking the human gait, as well as improve the  performance in a more natural gait and normal walking. This study aims to study the existing transtibial bionic prosthesis by comparing between 6 existing designs of powered ankle or transtibial bionic prosthesis that have been published in several publications. The discussion focuses on the design and mechanical systems, actuators related to the selection of motors and drive mechanisms as well as power transmission from actuators to moving components.


2016 ◽  
Vol 251 ◽  
pp. 61-67
Author(s):  
Harald Loose ◽  
Katja Orlowski

The paper deals with the determination of gait parameters using inertial measurement units (IMU). An IMU sensor incorporates three microelectromechanical sensors - triple-axis gyroscope, accelerometer and magnetometer. A standard experimental setup for the observation of the locomotion system using seven Xsens MTw sensors was developed. They are applied to the lower limbs and the pelvis of the subject. The synchronization of data from all sensor components (gyroscope, accelerometer and magnetometer) as well as the onboard estimation of the orientation is provided by the Xsens and Adwinda hard-and software. The strapped down data are received with a rate of 60 Hz. The output data of a single IMU sensor allow motion analysis of the sensor unit itself as well as the motion of the limb where the sensor is mounted to. Stable and reliable algorithms processing the gait data and calculating gait features of a single sensor are developed and evaluated. These algorithms are based on precise determination of each gait cycle. In the middle of stance phase the foot is not moving. It stands on the floor and, following, the initial conditions for the calculation of foot velocities and distances by integration are predetermined. Various features of the gait cycle as well as e.g. dependencies in between features or on the gait velocities are investigated. The application of seven sensors to the limbs of the locomotion system provides measurements of their 3D motion observed in an inertial coordinate system. The limbs are parts of skeleton and interconnected by joints. Introducing a skeleton model, the quality of measurements is evaluated and improved. Joint angles, symmetry ratios and other gait parameters are determined. These results can be used for analysis of the gait of any subject as well as of any cohort.


Author(s):  
Ítalo Rodrigues ◽  
Jadiane Dionisio ◽  
Rogério Sales Gonçalves

2016 ◽  
Vol 35 (3) ◽  
pp. 21-28
Author(s):  
Anatoly S. Bobe ◽  
◽  
Dmitry V. Konyshev ◽  
Sergey A. Vorotnikov ◽  
◽  
...  
Keyword(s):  

1998 ◽  
Vol 79 (4) ◽  
pp. 2155-2170 ◽  
Author(s):  
L. Bianchi ◽  
D. Angelini ◽  
G. P. Orani ◽  
F. Lacquaniti

Bianchi, L., D. Angelini, G. P. Orani, and F. Lacquaniti. Kinematic coordination in human gait: relation to mechanical energy cost. J. Neurophysiol. 79: 2155–2170, 1998. Twenty-four subjects walked at different, freely chosen speeds ( V) ranging from 0.4 to 2.6 m s−1, while the motion and the ground reaction forces were recorded in three-dimensional space. We considered the time course of the changes of the angles of elevation of the trunk, pelvis, thigh, shank, and foot in the sagittal plane. These angles specify the orientation of each segment with respect to the vertical and to the direction of forward progression. The changes of the trunk and pelvis angles are of limited amplitude and reflect the dynamics of both right and left lower limbs. The changes of the thigh, shank, and foot elevation are ample, and they are coupled tightly among each other. When these angles are plotted one versus the others, they describe regular loops constrained on a plane. The plane of angular covariation rotates, slightly but systematically, along the long axis of the gait loop with increasing V. The rotation, quantified by the change of the direction cosine of the normal to the plane with the thigh axis ( u 3 t ), is related to a progressive phase shift between the foot elevation and the shank elevation with increasing V. As a next step in the analysis, we computed the mass-specific mean absolute power ( P u ) to obtain a global estimate of the rate at which mechanical work is performed during the gait cycle. When plotted on logarithmic coordinates, P u increases linearly with V. The slope of this relationship varies considerably across subjects, spanning a threefold range. We found that, at any given V > 1 m s−1, the value of the plane orientation ( u 3 t ) is correlated with the corresponding value of the net mechanical power ( P u ). On the average, the progressive rotation of the plane with increasing V is associated with a reduction of the increment of P u that would occur if u 3 t remained constant at the value characteristic of low V. The specific orientation of the plane at any given speed is not the same in all subjects, but there is an orderly shift of the plane orientation that correlates with the net power expended by each subject. In general, smaller values of u 3 t tend to be associated with smaller values of P u and vice versa. We conclude that the parametric tuning of the plane of angular covariation is a reliable predictor of the mechanical energy expenditure of each subject and could be used by the nervous system for limiting the overall energy expenditure.


Sign in / Sign up

Export Citation Format

Share Document