The Use of DEM and Satellite Data for Regional Scale Soil Databases

2002 ◽  
Vol 51 (1-2) ◽  
pp. 263-272 ◽  
Author(s):  
Endre Dobos ◽  
B. Norman ◽  
B. Worstell ◽  

New, quantitative methods and data sources for characterizing small scale soil resources have been demonstrated. AVHRR and coarse spatial resolution DEM were designed for mapping large areas of the world quickly and cost effectively. The method combines digital elevation data, “ground truth” information, including the soil taxonomic class for measured soil locations, and a time series of satellite images to form a digital soil database. The results show that using ancillary information such as AVHRR data and DEM derivatives from the national to continental level surveys is among the most promising tools for geographers and soil surveyors. The AVHRR data is often used for land cover studies but its usefulness in soil studies has not yet been proven. This study is a representative example of the usefulness of AVHRR data in characterizing the soil-forming environment and delineating soil patterns, particularly when integrated with other data for describing the soil landscape, such as the DEM, slope, curvature and PDD. The predictive power of AVHRR and similar low spatial resolution satellite data sources could be further improved with the development of soil sensitive filters. Mention should be made of the potential improvement of the products derived from these data sources with the use of better quality data provided by satellites that have been launched recently. Neither the AVHRR nor the DEM-derivatives show high correlation with the soil classes, but both represent a great portion of the environmental variability. In general, the more uncorrelated information is extracted from DEM and AVHRR, the better explanation of the spatial soil variability is achieved with an integrated use of them. The images of AVHRR time series show a relatively low correlation, thus each of the new dates adds much potential information on the soils. The studies also highlighted the great help of surface vegetation in soil remote sensing, as indicated by the high R² value of Band 1 and NDVI. The importance of the short-term weather history of the study area was also demonstrated.  Terrain information and terrain variables were primarily developed for large scale local studies. Small scale mapping of large regions presents different issues, like over-generalization and over-smoothing of the soil information. The terrain features with smaller extents are dissolved into a larger neighborhood. As a smoother terrain map is created, a lot of detail is lost and less variability is observable. Many of the terrain attributes are useless with this approach. Elevation, slope, relief intensity, potential drainage density and the curvature variables are the most informative digital variables for characterizing the soil-landscape in small scale inventories.  The resulting soil databases will have all the advantages of quantitatively derived databases, including consistency, homogeneity, and reduced data generalization and edge-matching problems. Although the results from the above procedures are believed to be accurate enough to serve as a basis for global and regional studies, they should be checked and further revised by local and regional experts to ensure quality. Research should continue on improving the procedures, augmenting the pedon data with new field sampling, and incorporating new image and DEM data sources. One of the most important results of these studies is the demonstration of the usefulness of these data sources for small scale soil mapping and the overall validity and representatitivity of the AVHRR-terrain/soil correlation within the temperate region of the world. Further studies will need to be performed to test the use of AVHRR and terrain data for other climate zones of the World, where potential problems, like continuous cloud cover, may occur.

2019 ◽  
Vol 11 (6) ◽  
pp. 622 ◽  
Author(s):  
Federico Filipponi

Satellite data play a major role in supporting knowledge about fire severity by delivering rapid information to map fire-damaged areas in a precise and prompt way. The high availability of free medium-high spatial resolution optical satellite data, offered by the Copernicus Programme, has enabled the development of more detailed post-fire mapping. This research study deals with the exploitation of Sentinel-2 time series to map burned areas, taking advantages from the high revisit frequency and improved spatial and spectral resolution of the MSI optical sensor. A novel procedure is here presented to produce medium-high spatial resolution burned area mapping using dense Sentinel-2 time series with no a priori knowledge about wildfire occurrence or burned areas spatial distribution. The proposed methodology is founded on a threshold-based classification based on empirical observations that discovers wildfire fingerprints on vegetation cover by means of an abrupt change detection procedure. Effectiveness of the procedure in mapping medium-high spatial resolution burned areas at the national level was demonstrated for a case study on the 2017 Italy wildfires. Thematic maps generated under the Copernicus Emergency Management Service were used as reference products to assess the accuracy of the results. Multitemporal series of three different spectral indices, describing wildfire disturbance, were used to identify burned areas and compared to identify their performances in terms of spectral separability. Result showed a total burned area for the Italian country in the year 2017 of around 1400 km2, with the proposed methodology generating a commission error of around 25% and an omission error of around 40%. Results demonstrate how the proposed procedure allows for the medium-high resolution mapping of burned areas, offering a benchmark for the development of new operational downstreaming services at the national level based on Copernicus data for the systematic monitoring of wildfires.


2010 ◽  
Vol 23 (15) ◽  
pp. 4233-4242 ◽  
Author(s):  
Ryan Eastman ◽  
Stephen G. Warren

Abstract Visual cloud reports from land and ocean regions of the Arctic are analyzed for total cloud cover. Trends and interannual variations in surface cloud data are compared to those obtained from Advanced Very High Resolution Radiometer (AVHRR) and Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) satellite data. Over the Arctic as a whole, trends and interannual variations show little agreement with those from satellite data. The interannual variations from AVHRR are larger in the dark seasons than in the sunlit seasons (6% in winter, 2% in summer); however, in the surface observations, the interannual variations for all seasons are only 1%–2%. A large negative trend for winter found in the AVHRR data is not seen in the surface data. At smaller geographic scales, time series of surface- and satellite-observed cloud cover show some agreement except over sea ice during winter. During the winter months, time series of satellite-observed clouds in numerous grid boxes show variations that are strangely coherent throughout the entire Arctic.


2021 ◽  
Vol 10 (4) ◽  
pp. 267
Author(s):  
Inder Tecuapetla-Gómez ◽  
Gerardo López-Saldaña ◽  
María Isabel Cruz-López ◽  
Rainer Ressl

Earth observation (EO) data play a crucial role in monitoring ecosystems and environmental processes. Time series of satellite data are essential for long-term studies in this context. Working with large volumes of satellite data, however, can still be a challenge, as the computational environment with respect to storage, processing and data handling can be demanding, which sometimes can be perceived as a barrier when using EO data for scientific purposes. In particular, open-source developments which comprise all components of EO data handling and analysis are still scarce. To overcome this difficulty, we present Tools for Analyzing Time Series of Satellite Imagery (TATSSI), an open-source platform written in Python that provides routines for downloading, generating, gap-filling, smoothing, analyzing and exporting EO time series. Since TATSSI integrates quality assessment and quality control flags when generating time series, data quality analysis is the backbone of any analysis made with the platform. We discuss TATSSI’s 3-layered architecture (data handling, engine and three application programming interfaces (API)); by allowing three APIs (a native graphical user interface, some Jupyter Notebooks and the Python command line) this development is exceptionally user-friendly. Furthermore, to demonstrate the application potential of TATSSI, we evaluated MODIS time series data for three case studies (irrigation area changes, evaluation of moisture dynamics in a wetland ecosystem and vegetation monitoring in a burned area) in different geographical regions of Mexico. Our analyses were based on methods such as the spatio-temporal distribution of maxima over time, statistical trend analysis and change-point decomposition, all of which were implemented in TATSSI. Our results are consistent with other scientific studies and results in these areas and with related in-situ data.


2021 ◽  
Author(s):  
Sonia Silvestri ◽  
Alessandra Borgia

<p>Storing up to 70 kg of carbon per cubic meter, peatlands are among the most carbon-dense environments in the world. If in pristine conditions, peatlands support a number of ecosystem services as for example water retention and mitigation of droughts and floods, water purification, water availability to wildlife. Their preservation is one of the main goals of the EU policy and of other initiatives around the world.</p><p>Despite their importance, Alpine peatlands have been rarely studied and their presence is not even included in the EU maps, as for example the JRC Relative Cover of Peat Soils map, and only some sites are included in the Corine Land Cover map. The precise localization of peatland sites and the assessment of their extent is the first fundamental step for the implementation of adequate conservation policies. To this end, satellite remote sensing is the ideal instrument to provide adequate spatial resolution to detect and characterize Alpine peatlands at the regional scale. In this study, we use Sentinal-2 satellite data combined with 2m spatial resolution digital elevation model (from LiDAR data) to detect and quantify the extent of peatlands in the Trentino - Alto Adige region, an area of about 12,000 sq km located in the heart of the Italian Alpine region. Ground truth data include 71 peatlands that cover a total surface of more than 2,000 sq m. Field campaigns and lab analyses on some selected sites show that, on average, the sampled peatlands have depth of about 1m, Bulk Density of 0.128 g cm<sup>-3</sup> and LOI of 63%, hence indicating that the organic carbon content by soil volume is high, being on average 0.04 g cm<sup>-3</sup>. Satellite data analysis allowed us to detect a large number of peatland sites with high accuracy, thus confirming the importance of Alpine peatlands as carbon stock sites for the region. Moreover, thanks to the correlation between two indices (NDVI and NDWI) we could characterize the water content of these sites, hence analyzing its seasonal variation and inferring possible future scenarios linked to climate change effects.</p>


2018 ◽  
Vol 10 (8) ◽  
pp. 1216 ◽  
Author(s):  
Jonathan Dash ◽  
Grant Pearse ◽  
Michael Watt

The development of methods that can accurately detect physiological stress in forest trees caused by biotic or abiotic factors is vital for ensuring productive forest systems that can meet the demands of the Earth’s population. The emergence of new sensors and platforms presents opportunities to augment traditional practices by combining remotely-sensed data products to provide enhanced information on forest condition. We tested the sensitivity of multispectral imagery collected from time-series unmanned aerial vehicle (UAV) and satellite imagery to detect herbicide-induced stress in a carefully controlled experiment carried out in a mature Pinus radiata D. Don plantation. The results revealed that both data sources were sensitive to physiological stress in the study trees. The UAV data were more sensitive to changes at a finer spatial resolution and could detect stress down to the level of individual trees. The satellite data tested could only detect physiological stress in clusters of four or more trees. Resampling the UAV imagery to the same spatial resolution as the satellite imagery revealed that the differences in sensitivity were not solely the result of spatial resolution. Instead, vegetation indices suited to the sensor characteristics of each platform were required to optimise the detection of physiological stress from each data source. Our results define both the spatial detection threshold and the optimum vegetation indices required to implement monitoring of this forest type. A comparison between time-series datasets of different spectral indices showed that the two sensors are compatible and can be used to deliver an enhanced method for monitoring physiological stress in forest trees at various scales. We found that the higher resolution UAV imagery was more sensitive to fine-scale instances of herbicide induced physiological stress than the RapidEye imagery. Although less sensitive to smaller phenomena the satellite imagery was found to be very useful for observing trends in physiological stress over larger areas.


2019 ◽  
Vol 44 (2) ◽  
pp. 142-151
Author(s):  
Peter Enevoldsen

This study makes use of data from six meteorological masts to examine five different data sources of roughness lengths. The data sources can be applied in most regions of the world. The consequences of applying wrong roughness lengths can impact the business case of a wind project. The experiment confirmed the preliminary expectation, as the optimized roughness approach provided better results than the remaining four approaches and, furthermore, was able to treat different tree heights. The initial test was conducted using a spatial resolution of 20 m for optimized roughness approach, while the other data sources used a greater resolution. As a response, optimized roughness approach was reused for the other spatial resolutions showing better results than the remaining approaches. One other remarkable finding associated with this study was the relationship between spatial resolution and errors in the estimation, as a resolution above 100 m provided random results with no relationship whatsoever.


2018 ◽  
Vol 12 ◽  
pp. 85-98
Author(s):  
Bojan Kostadinov ◽  
Mile Jovanov ◽  
Emil STANKOV

Data collection and machine learning are changing the world. Whether it is medicine, sports or education, companies and institutions are investing a lot of time and money in systems that gather, process and analyse data. Likewise, to improve competitiveness, a lot of countries are making changes to their educational policy by supporting STEM disciplines. Therefore, it’s important to put effort into using various data sources to help students succeed in STEM. In this paper, we present a platform that can analyse student’s activity on various contest and e-learning systems, combine and process the data, and then present it in various ways that are easy to understand. This in turn enables teachers and organizers to recognize talented and hardworking students, identify issues, and/or motivate students to practice and work on areas where they’re weaker.


2017 ◽  
Author(s):  
Gabin Archambault

This 5 km resolution grid presents groundwater storage in Africa (in mm). This parameter was estimated by combining the saturated aquifer thickness and effective porosity of aquifers across Africa. For each aquifer flow/storage type an effective porosity range was assigned based on a series of studies across Africa and surrogates in other parts of the world. Groundwater storage is given in millimeters. Detailed description of the methodology, and a full list of data sources used to develop the layer can be found in the peer-reviewed paper available here: http://iopscience.iop.org/article/10.1088/1748-9326/7/2/024009/pdf The raster and a high resolution PDF file are available for download on the website of British Geological Survey (BGS): http://www.bgs.ac.uk/research/groundwater/international/africanGroundwater/mapsDownload.html Groundwater Storage


Sign in / Sign up

Export Citation Format

Share Document