Growth of Monolayer WS2 Single Crystals with Atmospheric Pressure CVD: Role of Temperature

MRS Advances ◽  
2019 ◽  
Vol 4 (3-4) ◽  
pp. 255-262
Author(s):  
Yong Xie ◽  
Guanfei Wang ◽  
Zhan Wang ◽  
Tang Nan ◽  
Haolin Wang ◽  
...  

ABTRACTIt has been demonstrated that the introduction of NaCl can significantly improve the quality of monolayer WS2 at the growth temperatures ranging from 700°C to 850°C by atmospheric pressure chemical vapor deposition (APCVD) without the assistant of hydrogen. Here, the influence of NaCl on the nucleation and growth of WS2 has been thoroughly investigated. The morphology and quality of WS2 grown with different temperatures are discussed by optical microscope, Raman and Photoluminescence (PL) spectra. It was found that amount of NaCl can efficiently influence the morphology and quality of WS2 crystals. PL intensity of WS2 crystal increases around three times from the center region to the edge of an individual domain, which may be attributed to the appearance of small triangle hollows formed during the growth at the edge of single crystal WS2.

2003 ◽  
Vol 15 (9) ◽  
pp. 1763-1765 ◽  
Author(s):  
Naoyuki Takahashi ◽  
Yusuke Nakatani ◽  
Takuma Yatomi ◽  
Takato Nakamura

Author(s):  
Byoungdo Lee ◽  
Weishen Chu ◽  
Wei Li

Abstract Low-pressure chemical vapor deposition (LPCVD) is the most efficient method to synthesize large-scale, high-quality graphene for many potential applications such as flexible electronics, solar cells, and separation membranes. The quality of LPCVD is affected by process variables including methane/hydrogen (CH4/H2) ratio, time, pressure, temperature, and cooling rate. The cooling rate has been recognized as one of the most important process variables affecting the amount of carbon source, nucleation, reaction time, and thus the quality of the LPCVD. In this research, we investigate the effect of cooling rate on the quality of graphene synthesize by changing the cooling rate and the gas feeding time. Graphene coverage is measured by Raman mapping. It is found that fast cooling rate leads to decreased carbon source reaction time, which in turn results in higher coverage by monolayer graphene. The temperature-dependent gas feeding time corresponding to different cooling rates can be used to properly supply the carbon source onto the copper surface, also leading to a higher graphene coverage.


2016 ◽  
Vol 5 (2) ◽  
pp. 56
Author(s):  
Keiji Komatsu ◽  
Pineda Marulanda David Alonso ◽  
Nozomi Kobayashi ◽  
Ikumi Toda ◽  
Shigeo Ohshio ◽  
...  

<p class="1Body">MgO films were epitaxially grown on single crystal MgO substrates by atmospheric-pressure chemical vapor deposition (CVD). Reciprocal lattice mappings and X-ray reflection pole figures were used to evaluate the crystal quality of the synthesized films and their epitaxial relation to their respective substrates. The X-ray diffraction profiles indicated that the substrates were oriented out-of-plane during MgO crystal growth. Subsequent pole figure measurements showed how all the MgO films retained the substrate in-plane orientations by expressing the same pole arrangements. The reciprocal lattice mappings indicated that the whisker film showed a relatively strong streak while the continuous film showed a weak one. Hence, highly crystalline epitaxial MgO thin films were synthesized on single crystal MgO substrates by atmospheric-pressure CVD.</p>


RSC Advances ◽  
2015 ◽  
Vol 5 (55) ◽  
pp. 44142-44148 ◽  
Author(s):  
Jun Pu ◽  
Lei Tang ◽  
Chaowei Li ◽  
Taotao Li ◽  
Lin Ling ◽  
...  

The facile and scalable technique is demonstrated, which grow graphene with controllable layers on copper foil substrates using the etching effect of H2 in atmospheric pressure chemical vapor deposition (APCVD).


Sign in / Sign up

Export Citation Format

Share Document