Hardness and adhesive properties of (Cr, Mo) oxycarbide films on stainless steel via vapor deposition

1996 ◽  
Vol 11 (11) ◽  
pp. 2895-2902 ◽  
Author(s):  
Ming-Hung Lo ◽  
Wen-Cheng J. Wei

A hexacarbonyl of chromium and molybdenum [(Cr, Mo) (CO)6] was used as an oxycarbide source for the coating on stainless steel 304 (SS304) at temperatures from 175 °C to 450 °C. Hardness of the films was determined from a microindentation technique through a similar calculation after Thomas (1987). Intrinsic hardnesses of the films formed at low and medium temperatures were determined to be 8.61 and 2.75 GPa, respectively. Both of them are larger than that of SS304 substrate, 1.75 GPa. Adhesive strength of the films was measured by the scratching test. The results reveal that the adhesive strengths of the films formed at low, medium, and high temperatures are 2.8 N, 37.6 N, and 36.0 N, respectively. Two different fracture modes after scratching were found for the films obtained at various temperature regions. A spalling-off type or a deformation failure with many cracks and deformation bands beside the striation was found.

Alloy Digest ◽  
2006 ◽  
Vol 55 (5) ◽  

Abstract AK Steel 410S is a fully ferritic stainless steel with elements added to retard austenite formation at high temperatures. The resulting low hardening allows for use as oxidation-resistant parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-964. Producer or source: AK Steel.


2019 ◽  
Vol 14 (3) ◽  
Author(s):  
Saravanan S ◽  
Murugan G

This study addresses the effect of process parameters viz., loading ratio (mass of explosive/mass of flyer plate) and preset angle on dynamic bend angle, collision velocity and flyer plate velocity in dissimilar explosive cladding. In addition, the variation in interfacial microstructure and mechanical strength of aluminium 5052-stainless steel 304 explosive clads is reported. The interface exhibits a characteristic undulating interface with a continuous molten layer formation. The interfacial amplitude increases with the loading ratio and preset angle. Maximum hardness is observed at regions closer to the interface


Author(s):  
Ying Hong ◽  
Xuesheng Wang ◽  
Yan Wang ◽  
Zhao Zhang ◽  
Yong Han

Stainless steel 304 L tubes are commonly used in the fabrication of heat exchangers for nuclear power stations. The stress corrosion cracking (SCC) of 304 L tubes in hydraulically expanded tube-to-tubesheet joints is the main reason for the failure of heat exchangers. In this study, 304 L hydraulically expanded joint specimens were prepared and the residual stresses of a tube were evaluated with both an experimental method and the finite element method (FEM). The residual stresses in the outer and inner surfaces of the tube were measured by strain gauges. The expanding and unloading processes of the tube-to-tubesheet joints were simulated by the FEM. Furthermore, an SCC test was carried out to verify the results of the experimental measurement and the FEM. There was good agreement between the FEM and the experimental results. The distribution of the residual stress of the tube in the expanded joint was revealed by the FEM. The effects of the expansion pressure, initial tube-to-hole clearance, and yield strength of the tube on the residual stress in the transition zone that lay between the expanded and unexpanded region of the tube were investigated. The results showed that the residual stress of the expanded joint reached the maximum value when the initial clearance was eliminated. The residual stress level decreased with the decrease of the initial tube-to-hole clearance and yield strength. Finally, an effective method that would reduce the residual stress without losing tightness was proposed.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1039 ◽  
Author(s):  
Luciano Pisanu ◽  
Leonardo Costa Santiago ◽  
Josiane Dantas Viana Barbosa ◽  
Valter Estevão Beal ◽  
Marcio Luis Ferreira Nascimento

The growing demand in the consumer market for products with sustainable technologies has motivated new applications using overmolded natural fiber composites. Therefore, studies have been conducted mainly to understand the adhesive properties of overmolded parts. In the present study, a polypropylene (PP) composite with 30% coconut fibers without additives was developed with the aid of a corotating twin screw extruder. Subsequently, a multicomponent injection mold was developed based on the geometry of the ISO 527 type I specimen, in which samples overmolded with PP and PP–coconut-fiber composite, with the overlap in the central area, were obtained to evaluate the adhesive strength of dissimilar materials. The objective of this study was to evaluate the bond between PP and PP–coconut-fiber composite under different processing conditions using an adhesive strength testing device to perform a pure shear analysis. The experimental conditions followed a statistical design considering four factors in two levels and a significance level of 5%. The results indicated that adhesive strength increased significantly as the overlap area increased. It was observed that temperature and injection flow rate were the factors that most contributed to strengthening the bonds of dissimilar materials.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Gongfeng Jiang ◽  
Gang Chen ◽  
Liang Sun ◽  
Yiliang Zhang ◽  
Xiaoliang Jia ◽  
...  

Experimental results of uniaxial ratcheting tests for stainless steel 304 (SS304) under stress-controlled condition at room temperature showed that the elastic domain defined in this paper expands with accumulation of plastic strain. Both ratcheting strain and viscoplastic strain rates reduce with the increase of elastic domain, and the total strain will be saturated finally. If the saturated strain and corresponded peak stress of different experimental results under the stress ratio R ≥ 0 are plotted, a curve demonstrating the material shakedown states of SS304 can be constituted. Using this curve, the accumulated strain in a pressure vessel subjected to cyclic internal pressure can be determined by only an elastic-plastic analysis, and without the cycle-by-cycle analysis. Meanwhile, a physical experiment of a thin-walled pressure vessel subjected to cyclic internal pressure has been carried out to verify the feasibility and effectiveness of this noncyclic method. By comparison, the accumulated strains evaluated by the noncyclic method agreed well with those obtained from the experiments. The noncyclic method is simpler and more practical than the cycle-by-cycle method for engineering design.


Sign in / Sign up

Export Citation Format

Share Document