Characteristics of TiN film deposited on stellite using reactive magnetron sputter ion plating

1997 ◽  
Vol 12 (9) ◽  
pp. 2393-2400 ◽  
Author(s):  
Min-Ku Lee ◽  
Hee-Soo Kang ◽  
Whung-Whoe Kim ◽  
Joung-Soo Kim ◽  
Won-Jong Lee

TiN films were deposited onto stellite 6B alloy (Co base) by the reactive magnetron sputter ion plating. As the substrate bias increases, TiN film changes from columnar structure to dense structure with great hardness and smooth surface due to densification and resputtering by ion bombardment. The content of oxygen and carbon impurities in the TiN film decreases greatly when the substrate bias is applied. The preferred orientation of the TiN films changes from (200) to (111) with decreasing N2/Ar ratio and from (200) to (111) and then (220) with increasing the substrate bias. The change of the preferred orientation is discussed in terms of surface energy and strain energy which are related to the impurity contents and the ion bombardment damage. The hardness of the TiN film increases with increasing compressive stress generated in the film by virtue of ion bombardment. It becomes as high as up to 3500 kgf/mm2 when an appropriate substrate bias is applied.

2005 ◽  
Vol 498-499 ◽  
pp. 717-721 ◽  
Author(s):  
R.A. Vieira ◽  
Maria do Carmo de Andrade Nono

TiN thin film has been produced on the surface of AISI D6 tool steel by using a titanium interlayer. In this work, the morphology, the microstructure and interface depth profile of TiN films deposited at two substrate temperatures (220 oC and 450 oC) in the coating process are presented and discussed. The AISI D6 tool steel substrates were coated with titanium thin film as the underlayer and with TiN thin film as the top layer. They were deposited by conventional cathodic arc process. The surfaces of TiN films were observed by scanning electron microscopy (SEM). The microstructure of these samples was analysed by X-ray diffractometry (XRD). The influence of the substrate temperature on the TiN film-Ti film-AISI D6 interface region were investigated by energy dispersive spectrometry (EDS) and its cross section were observed using backscattered electron image (BEI). The results showed that TiN films deposited at 220 oC formed a film of strongly (111) preferred orientation, while in 450 oC formed a film of (111) and (220) preferred orientation. The thickness of the TiN films increased with increasing substrate temperature. The results show that the interface region of the TiN film-Ti film-AISI D6 substrate system was significantly improved when higher substrate temperature during deposition is used.


2008 ◽  
Vol 373-374 ◽  
pp. 167-171 ◽  
Author(s):  
Ming Zhu ◽  
Shu Wang Duo ◽  
Tian Peng Li ◽  
Mei Shuan Li ◽  
Yan Chun Zhou

Cr-Al-N coatings with the thickness of about 2 μm have been prepared by a reactive magnetron sputtering method. The effects of substrate negative bias voltage (VB) on the microstructure and critical failure load have been investigated as the VB varied from 0 to –150 V. With VB increasing, grain size, lattice parameter and microstrain increase. (111) preferred orientation dominates in the coatings deposited under 0 and –50 V, while a (200) preferred orientation developed when VB further raised. The reasons for these variation caused by VB are discussed.


Author(s):  
Kai Yang ◽  
Jianqing Jiang ◽  
Mingyuan Gu

Titanium nitride (TiN) films were grown on Si (111) and 95W18Cr4V high-speed steel substrates using DC reactive magnetron sputtering technique with different deposition time. The changes in crystal growth orientation of the TiN films were measured by X-ray diffraction (XRD). The surface & cross-sectional morphologies of TiN films were analyzed using field emission scanning electron microscopy (FESEM). The hardness and adhesive property of TiN films were evaluated as well. It is found that the increase of the film thickness favors the formation of the {111} preferred orientation of TiN films. When the {111} preferred orientation is presented, TiN films exhibit a kind of surface morphology of triangular pyramid with right angles. With the increase of the film thickness, the columnar grains continuously grow lengthwise and breadthwise. The size of grains influences the hardness of TiN films more greatly. The adhesive property of the film/substrate interface decreased with increasing film thickness.


1998 ◽  
Vol 13 (5) ◽  
pp. 1225-1229 ◽  
Author(s):  
U. C. Oh ◽  
Jung Ho Je ◽  
Jeong Y. Lee

The preferred orientation of the TiN film grown by sputter-deposition was studied by the cross-sectional TEM. The preferred orientation was changed from the (200) through the (110), and then finally to the (111) with the film thickness. The cross-sectional microstructure also shows that the film consists of three layers which are all columnar structure. The (111) preferred orientation was observed in the top layer, and the (110) in the middle layer, and finally the (200) in the bottom layer. It is very surprising that the (110) preferred orientation could be observed in a medium thickness region and there are two kinds of critical thicknesses. These results surely show the strong dependence of the change in the preferred orientation on the strain energy in TiN thin films.


2013 ◽  
Vol 706-708 ◽  
pp. 180-183
Author(s):  
Jie Wang ◽  
Shi Hang Jiang ◽  
Juan Juan Wang

Depositing TiN Film on the surface of 4Cr5MoSiV1 with multi-arc ion plating technology method. And 350°C, 450°C, 550°C and 650 °C short oxidation test and 550 °C cyclic oxidation test. By scanning electron microscopy (SEM) and electron spectrometry (EDS) to analysis micro-structure and phase structure of test samples, study TiN film on oxidation resistance, and utilize indentation method to measure mechanical properties. Results show: In a short time under oxidizing conditions, at 550 °C the TiN film still has a good oxidation resistance. The film still have a sufficient bonding strength below 600 °C.


Sign in / Sign up

Export Citation Format

Share Document