Two critical thicknesses in the preferred orientation of TiN thin film

1998 ◽  
Vol 13 (5) ◽  
pp. 1225-1229 ◽  
Author(s):  
U. C. Oh ◽  
Jung Ho Je ◽  
Jeong Y. Lee

The preferred orientation of the TiN film grown by sputter-deposition was studied by the cross-sectional TEM. The preferred orientation was changed from the (200) through the (110), and then finally to the (111) with the film thickness. The cross-sectional microstructure also shows that the film consists of three layers which are all columnar structure. The (111) preferred orientation was observed in the top layer, and the (110) in the middle layer, and finally the (200) in the bottom layer. It is very surprising that the (110) preferred orientation could be observed in a medium thickness region and there are two kinds of critical thicknesses. These results surely show the strong dependence of the change in the preferred orientation on the strain energy in TiN thin films.

1995 ◽  
Vol 10 (3) ◽  
pp. 634-639 ◽  
Author(s):  
U.C. Oh ◽  
Jung Ho Je ◽  
Jeong Y. Lee

Recently it was observed through cross-sectional TEM that the preferred orientation of the TiN thin film was changed from (200) to (111) with thickness. In this study, the process of the change in the preferred orientation was studied near the critical thickness by x-ray diffraction, and the value of the critical thickness could be estimated. The change of the critical thickness was also investigated with the strain energy per unit volume. The strain energy could be changed by controlling the energy of the bombarding particle, i.e., by adjusting the rf power, the working pressure, and the substrate bias in sputtering. The critical thickness was decreased monotonically in all cases as the energy of the bombarding particle or the strain energy per unit volume was increased. These results surely show the dependence of the change of the preferred orientation on the strain energy in the TiN thin films.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1418
Author(s):  
Yi-Jun Jen ◽  
Wei-Chieh Ma ◽  
Ting-Yen Lin

TiN thin films were obliquely bideposited with different subdeposit thicknesses. The morphology of the bideposited film was varied from a nano-zigzag array to a vertically grown columnar structure by reducing the subdeposit thickness. The principal index of refraction and extinction coefficient were obtained to explain the measured reflectance and transmittance spectra. The loss of the bideposited thin film decreased as the thickness of the subdeposit decreased. The principal indices for normal incidence were near or under unity, indicating the low reflection by the bideposited thin films. A TiN film with a subdeposit thickness of 3 nm demonstrated an average index of refraction of 0.83 and extinction coefficient of below 0.2 for visible wavelengths. The retrieved principal refractive indexes explained the anisotropic transmission and reflection. For most normal incident cases, the analysis offers the tunable anisotropic property of a TiN nanostructured film for multilayer design in the future.


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
E. Penilla ◽  
J. Wang

Nitrogen-rich titanium nitride (TiN) thin films containing excess nitrogen up to 87.0 at.% were produced on (100) Si substrates via the reactive magnetron DC-sputtering of a commercially available 99.995 at.% pure Ti target within an argon-nitrogen (Ar-N2) atmosphere with a 20-to-1 gas ratio. The process pressure (PP) and substrate temperature (TS) at which deposition occurred were varied systematically between 0.26 Pa–1.60 Pa and between15.0∘C–600∘C, respectively, and their effects on the chemical composition, surface morphology, and preferred orientation were characterized by energy dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD). The EDS analysis confirms increasing nitrogen content with increasingPPandTS. The SEM images reveal a uniform and crystallized surface morphology as well as a closely packed cross-sectional morphology for all crystalline films and a loosely packed cross-sectional morphology for amorphous films. Films produced at lowerPPandTShave a pyramidal surface morphology which transitions to a columnar and stratified structure asPPandTSincrease. The XRD analysis confirms the existence of only theδ-TiN phase and the absence of other nitrides, oxides, and/or sillicides in all cases. It also indicates that at lowerPPandTS, the preferred orientation relative to the substrate is along the (111) planes, and that it transitions to a random orientation along the (200), (220), and (311) planes asPPandTSincrease and these results correlate with and qualify those observed by SEM.


2016 ◽  
Vol 709 ◽  
pp. 91-94
Author(s):  
Na Xiao ◽  
Bo Yang ◽  
Fei Fei Du ◽  
Yan Wu ◽  
Xiang Zhao ◽  
...  

In this present work, TiN films with various thicknesses (from 0.3 μm to 2 μm) were deposited by DC reactive magnetron sputtering on Ti6Al4V substrates. The evolution of texture and microstructure were studied by X-ray diffraction and Scanning Electron Microscopy, respectively. The XRD characterization indicates that the preferred texture of TiN films is changed from (111) to (100) with increasing the film thickness. The microstructure characterization shows that their microstructure transform from continuous into columnar with increasing the TiN film thickness. It is considered these results are arised from the change of overall energy including surface energy and strain energy with the film thickness. The hardness of TiN film increases with increasing the film thickness.


1997 ◽  
Vol 12 (9) ◽  
pp. 2393-2400 ◽  
Author(s):  
Min-Ku Lee ◽  
Hee-Soo Kang ◽  
Whung-Whoe Kim ◽  
Joung-Soo Kim ◽  
Won-Jong Lee

TiN films were deposited onto stellite 6B alloy (Co base) by the reactive magnetron sputter ion plating. As the substrate bias increases, TiN film changes from columnar structure to dense structure with great hardness and smooth surface due to densification and resputtering by ion bombardment. The content of oxygen and carbon impurities in the TiN film decreases greatly when the substrate bias is applied. The preferred orientation of the TiN films changes from (200) to (111) with decreasing N2/Ar ratio and from (200) to (111) and then (220) with increasing the substrate bias. The change of the preferred orientation is discussed in terms of surface energy and strain energy which are related to the impurity contents and the ion bombardment damage. The hardness of the TiN film increases with increasing compressive stress generated in the film by virtue of ion bombardment. It becomes as high as up to 3500 kgf/mm2 when an appropriate substrate bias is applied.


Author(s):  
J.-F. Revol ◽  
Y. Van Daele ◽  
F. Gaill

The only form of cellulose which could unequivocally be ascribed to the animal kingdom is the tunicin that occurs in the tests of the tunicates. Recently, high-resolution solid-state l3C NMR revealed that tunicin belongs to the Iβ form of cellulose as opposed to the Iα form found in Valonia and bacterial celluloses. The high perfection of the tunicin crystallites led us to study its crosssectional shape and to compare it with the shape of those in Valonia ventricosa (V.v.), the goal being to relate the cross-section of cellulose crystallites with the two allomorphs Iα and Iβ.In the present work the source of tunicin was the test of the ascidian Halocvnthia papillosa (H.p.). Diffraction contrast imaging in the bright field mode was applied on ultrathin sections of the V.v. cell wall and H.p. test with cellulose crystallites perpendicular to the plane of the sections. The electron microscope, a Philips 400T, was operated at 120 kV in a low intensity beam condition.


1960 ◽  
Vol 19 (3) ◽  
pp. 803-809
Author(s):  
D. J. Matthews ◽  
R. A. Merkel ◽  
J. D. Wheat ◽  
R. F. Cox

Sign in / Sign up

Export Citation Format

Share Document