Growth and characterization of semiconductor nanoparticles in porous sol-gel films

1997 ◽  
Vol 12 (11) ◽  
pp. 3115-3126 ◽  
Author(s):  
E. J. C. Dawnay ◽  
M. A. Fardad ◽  
Mino Green ◽  
E. M. Yeatman

Two methods for the preparation of semiconductor doped sol-gel films, for applications in nonlinear optics, have been studied and compared. In the first, porous films are spun from sols containing the cation precursor, and then reacted with H2S gas, and in the second, the cation is adsorbed onto the pore surfaces of passive films from aqueous solution before the gas reaction. Extensive results for CdS doping are given, and preliminary results are reported for other semiconductor species. It is shown that a sputtered silica layer can seal the structure to allow further heat treatment without loss of dopant. The effects of heat treatment of doped films are described, and the limitation of crystallite growth by pore size is shown.

1988 ◽  
Vol 121 ◽  
Author(s):  
Gregory C. Frye ◽  
Antonio J. Ricco ◽  
Stephen J. Martin ◽  
C. Jeffrey Brinker

ABSTRACTA novel technique for accurately obtaining nitrogen adsorption isotherms on thin porous films has been developed. These isotherms are useful for characterizing the surface area and pore size distribution of porous samples. The sensitivity to adsorbed nitrogen is increased by several orders of magnitude over conventional techniques by forming the test film on the substrate of a surface acoustic wave (SAW) device. This device functions as a microbalance able to detect less than 100 pg/cm2 of film. Surface areas and pore size distributions calculated from adsorption isotherms obtained with this technique on silicate sol-gel films are compared to those for bulk samples prepared from similar sol-gel solutions.


Author(s):  
Nitesh Parmar ◽  
Jitendra Kumar Srivastava

Abstract This study is an attempt to the removal of Ciprofloxacin (CIP) antibiotic from simulated wastewater using a photocatalytic process. The photocatalytic process was carried out in a photocatalytic reactor in the presence of TiO2 nanoparticles. TiO2 nanoparticles were successfully prepared in a laboratory scale using sol-gel method with titanium-isopropoxide (TTIP) as titanium precursor. Prepared material was found very effective to the removal of CIP antibiotic. The maximum removal efficiency of 87.95% of ciprofloxacin from aqueous solution was achieved at the pH 5, catalyst doze of 40 mg L−1 with initial concentration of ciprofloxacin 5 mg L−1, and the reaction time of 100 min additionally; material characterization of TiO2 was presented in detail in terms of XRD, SEM, UV, and FTIR. It has been found that at the optimum condition the total operating cost indicated for the removal of ciprofloxacin from aqueous solution is 786.56 (INR/kg of CIP removal). This technique demonstrated that photocatalytic reaction in presence of TiO2 nanoparticles is well applicable to treat pharmaceutical wastewater.


2019 ◽  
Vol 43 (21) ◽  
pp. 8315-8324
Author(s):  
Hui Yang ◽  
Rui Wang ◽  
Yaozu Wang ◽  
Jianzhong Jiang ◽  
Xingzhong Guo

Macroporous europium-doped Ca12Al14O33 (C12A7:Eu3+) was prepared via a sol–gel method followed by heat-treatment, and the resultant macroporous C12A7:Eu3+ shows potential for practical application in metal ion detection and has a good response to Pb2+ ions.


RSC Advances ◽  
2015 ◽  
Vol 5 (113) ◽  
pp. 93187-93193 ◽  
Author(s):  
Tingjie Chen ◽  
Min Niu ◽  
Xiaodong Wang ◽  
Wei Wei ◽  
Jinghong Liu ◽  
...  

Poly-aluminum silicate sulphate (PASS) was synthesized in a mixed aqueous solution of sodium silicate and aluminum silicate via a sol–gel method for use in ultra-low density fiberboard (ULDF).


2013 ◽  
Vol 717 ◽  
pp. 108-112
Author(s):  
Noorzahan Begum ◽  
Md Fazlul Bari ◽  
Salmie Suhana Binti Che Abdullah ◽  
R.A. Khairel ◽  
N. Ahmed

A new solid phase extractant silica aerogel immobilized with Cyanex 301 {bis (2,4,4-trimethylpentyl) dithiophosphinic acid} (SAWC) was prepared via a sol-gel method and investigated for the extraction of Zn (II) from aqueous solution by a batch extraction technique. It is found that SAWC can extract about 100% zinc at equilibrium pH 1.7. Prepared SAWC was characterized by FT-IR, BET, EDX and SEM which proved the presence of Cyanex 301 into silica aerogel. Moreover, the material is also easily regenerated and reused in the subsequent removal of Zn (II) in five cycles. Therefore, it could be concluded that it may perform as a solid phase extractant in the extraction of metal ions from the aqueous solution.


2014 ◽  
Vol 26 (7) ◽  
pp. 725-733 ◽  
Author(s):  
D. Duraibabu ◽  
T. Ganeshbabu ◽  
P. Saravanan ◽  
S. Ananda Kumar

1994 ◽  
Vol 346 ◽  
Author(s):  
Kyung Moon Choi ◽  
Kenneth J. Shea

ABSTRACTPoly(l,4-phenylene)-bridged and poly(1,6-hexylene)-bridged silsesquioxanes (PPS and HPS) were prepared by the sol-gel process. The surface areas and pore diameters of these porous xerogels were obtained by BET and BJH methods, respectively. These porous materials were used as a confinement matrix for the growth of small-sized semiconductor and transition metal clusters. Quantum-sized CdS particles in PPS (approximately 58+12 Â) and HPS (91+16 Â) matrices were prepared by first soaking the xerogel in a CdCl2 solution. Following a washing with water, a Na2S solution was then added. EDAX and electron diffraction techniques were used to identify the CdS particles. The particle sizes of CdS in PPS and HPS were determined by both UV measurements and from TEM images. Small-sized Cr clusters were prepared in dried xerogels by an internal doping method. Mixed Cr/CdS phases were also prepared by internal loading of a chromium metal precursor. Following deposition of CdS the xerogel was heated at 120 °C under high vacuum, resulting in formation of intimately mixed phases of Cr metal and CdS. Changes in morphology, in particular the surface area and pore size distribution were noted. A decrease in surface area and an increase in pore size were observed as a result of Cr metal deposition.


1993 ◽  
Vol 47 (2) ◽  
pp. 229-234 ◽  
Author(s):  
Upvan Narang ◽  
Frank V. Bright ◽  
Paras N. Prasad

Rhodamine 6G- (R6G) doped thin sol-gel films were cast on glass microscope slides and characterized with the use of steady-state and time-resolved fluorescence spectroscopy. The fluorescence intensity, photodegradation under laser illumination, and excited-state decay kinetics were all investigated as a function of dopant concentration. The excited-state decay kinetics of highly doped films show clear evidence of R6G aggregation. Photodegradation under laser illumination is very interesting and is discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document