Thermal evolution of the microstructure of nanosized LaFeO3 powders from the thermal decomposition of a heteronuclear complex, La[Fe(CN)6] · 5H2O

1998 ◽  
Vol 13 (5) ◽  
pp. 1335-1344 ◽  
Author(s):  
Enrico Traversa ◽  
Patrizia Nunziante ◽  
Masatomi Sakamoto ◽  
Yoshihiko Sadaoka ◽  
Maria Cristina Carotta ◽  
...  

The thermal decomposition of a heteronuclear complex, La[Fe(CN)6] · 5H2O, leads to the preparation of nanosized single-phase perovskite-type LaFeO3 powders. The microstructural evolution of LaFeO3 with the temperature has been studied by x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The product of the decomposition at 500 °C consists of nanoporous grains which have the morphology of the complex, but diffracting as a monocrystal of LaFeO3. At the higher temperatures, the nanosized particles start to separate from each other, still keeping the shape of the complex grains and forming soft agglomerates. The formation of LaFeO3 from the complex at low temperatures is facilitated by the formation of an orthorhombic transition phase.

2011 ◽  
Vol 412 ◽  
pp. 263-266
Author(s):  
Hong Wei Zhang ◽  
Li Li Zhang ◽  
Feng Rui Zhai ◽  
Jia Jin Tian ◽  
Can Bang Zhang

The higher mechanical strength of Al87Ce3Ni8.5Mn1.5 nanophase amorphous composites has been obtained with two methods. The first nanophase amorphous composites are directly produced by the single roller spin quenching technology. The method taken for the second nanophase amorphous composites is at first to obtain amorphous single-phase alloy, followed by annealed at different temperatures .The formative condition, the microstructure, the particle size, the volume fraction of α-Al phase and microhardness of nanophase amorphous composites etc have been investigated and compared by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The microstructure of composites produced by the second method is higher than the former, the fabricated material structure of the system is more uniform and the process is easier to control.


2013 ◽  
Vol 802 ◽  
pp. 227-231
Author(s):  
Panida Pilasuta ◽  
Pennapa Muthitamongkol ◽  
Chanchana Thanachayanont ◽  
Tosawat Seetawan

Crystal structure of Zn0.96Al0.02Ga0.02O was analyzed by X-Ray diffraction (XRD) technique and the microstructure was observed by scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD results showed single phase and hexagonal structure a = b = 3.24982 Å, and c = 5.20661 Å. The SEM and TEM results showed the grain size of material arrangement changed after sintering and TEM diffraction pattern confirmed hexagonal crystal structure of Zn0.96Al0.02Ga0.02O after sintering.


2006 ◽  
Vol 16 (01n02) ◽  
pp. 127-136
Author(s):  
P. MALAR ◽  
TAPASH RANJAN RAUTRAY ◽  
V. VIJAYAN ◽  
S. KASIVISWANATHAN

Polycrystalline ingots of CuInSe 2 and CuIn 3 Se 5 were synthesized by melt-quench technique starting from the stoichiometric mixture of constituent elements. X-ray Diffraction (XRD) studies confirmed the single-phase nature of the materials. Compositional analysis by Particle Induced X-ray Emission (PIXE) showed that the compounds are near stoichiometric. Thin films of CuInSe 2 and CuIn 3 Se 5 were grown from pre-synthesized CuInSe 2 and CuIn 3 Se 5 powders. The films were polycrystalline, single-phase and near stoichiometric in nature, as indicated by Transmission Electron Microscopy (TEM) and PIXE studies.


2012 ◽  
Vol 02 (01) ◽  
pp. 1250007 ◽  
Author(s):  
LAXMAN SINGH ◽  
U. S. RAI ◽  
K. D. MANDAL ◽  
MADHU YASHPAL

Ultrafine powder of CaCu2.80Zn0.20Ti4O12 ceramic was prepared using a novel semi-wet method. DTA/TG analysis of dry powder gives pre-information about formation of final product around 800°C. The formation of single phase was confirmed by X-ray diffraction analysis. The average particle size of sintered powder of the ceramic obtained from XRD and Transmission electron microscopy was found 59 nm and 102 nm, respectively. Energy Dispersive X-ray studies confirm the stoichiometry of the synthesized ceramic. Dielectric constant of the ceramic was found to be 2617 at room temperature at 1 kHz.


2001 ◽  
Vol 15 (30) ◽  
pp. 1455-1458 ◽  
Author(s):  
H. CHEN ◽  
X. K. LU ◽  
S. Q. ZHOU ◽  
X. H. HAO ◽  
Z. X. WANG

Single phase AlN nanowires are fabricated by a sublimation method. They were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), typical selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM). The SEM and TEM images show that most of the nanowires have diameters of about 10–60 nm. The crystal structure of AlN nanowires revealed by XRD, SAED and HRTEM shows the AlN nanowires have a wurtzite structure.


2021 ◽  
Vol 897 ◽  
pp. 103-108
Author(s):  
Kenneth Mensah ◽  
Hatem Mahmoud ◽  
Manabu Fujii ◽  
Hassan Shokry

Globally, the adverse environmental impact of waste plastics is of increasing concern. Most plastics are naturally non-degradable, thus imposes serious environmental threats, especially, to marine life. Upcycling such waste into valuable contents is an effective approach to managing waste plastics. In this study, graphene is synthesized from waste polystyrene (PS) by thermal decomposition at different temperatures (500, 600, 700, 800, 900 and 1000 °C) for two hours reaction time in a stainless steel autoclave. The synthesized materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy-disperse X-ray analysis (EDS) and surface area by using Brunauer–Emmett–Teller (BET). The yield of the product materials was investigated and optimized against the temperature. The synthesized graphene is considered a promising material for many applications, especially in environmental applications.


2002 ◽  
Vol 755 ◽  
Author(s):  
Susanthri C. Perera ◽  
Stephanie L. Brock

ABSTRACTThe formation of single phase FeP nanocrystals has been achieved by the reaction of Fe(III) salts (iron(III)acetylacetonate (Fe(acac)3) and iron(III)chloride (FeCl3)) with tris(trimethylsilyl)phosphine in trioctylphosphine oxide (TOPO)/trioctylphosphine (TOP) at elevated temperatures. The sizes of nanoparticles formed differ markedly depending on the initial iron salt used. Use of Fe(acac)3 always resulted in comparatively bigger particle formation (∼5 nm) while FeCl3 forms much smaller particles (∼1 nm) as confirmed by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM).


2011 ◽  
Vol 347-353 ◽  
pp. 1416-1419
Author(s):  
You Ning Xu ◽  
Hai Zhao ◽  
Duo Jiao Guan

Fe-Mn-Ce metal oxides nanosized particles have been prepared by co-precipitation approach using three kinds of precipitants NaOH, NH4OH and Na2CO3. The products were characterized by Powder X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and BET study. It was found that the samples prepared with NH4OH as a precipitator show higher surface areas and larger sulfur capacity at low calcinations temperature. At high reaction temperatures, the samples prepared with Na2CO3 as precipitator exhibited much better activities for SCR of nitric oxide with ammonia than catalysts prepared with NH4OH and NaOH as the precipitants.


2010 ◽  
Vol 29-32 ◽  
pp. 1820-1823
Author(s):  
Ke Gao Liu ◽  
Ya Liu ◽  
Bin Xu

Ni-Se powders synthesized by hydrothermal co-reduction method from NiCl2.6H2O and SeO2 at 95~220 °C. The phases and morphology of the products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) respectively. Experimental results show that, Ni0.85Se can be synthesized at 95~220 °C while noticeable impurities appeared at lower reaction temperatures. The products with single-phase Ni0.85Se obtained at 200 and 220 °C show hollow sphere structures with diameters of about 150 ~ 700 nm, which have complete and regular shape but no holes.


2018 ◽  
Vol 50 (3) ◽  
pp. 291-298
Author(s):  
H. Sutrisno ◽  
E.D. Siswani ◽  
K.S. Budiasih

Titanium dioxide (TiO2)-nanotubes were prepared by a simple technique reflux. The morphologies and microstructures of nanotubes were characterized by high resolution scanning electron microscopy (HRSEM), high resolution transmission electron microscopy (TEM), powder X-ray diffraction (XRD,) energy dispersive X-ray spectroscopy (EDS) and surface area analyzer. The microstructures of TiO2 phases obtained from the sintering process of TiO2-nanotubes for 1 hour at various temperatures from 100 to 1000?C at intervals of 50?C were investigated from the XRD diffractograms. The analyses of morphologies and microstructures from HRSEM and HRTEM images describe the sample as nanotubes. The nanotube is single phase exhibiting TiO2(B) structure. The XRD patterns show that TiO2(B)-nanotubes transform into anatase phase and then become rutile due to increasing sintering temperatures.


Sign in / Sign up

Export Citation Format

Share Document