Phase selection in a mechanically alloyed Cu2013;In–Ga–Se powder mixture

1999 ◽  
Vol 14 (2) ◽  
pp. 377-383 ◽  
Author(s):  
C. Suryanarayana ◽  
E. Ivanov ◽  
R. Noufi ◽  
M. A. Contreras ◽  
J.J. Moore

Formation of a homogeneous nanocrystalline CuIn0.7Ga0.3Se2 alloy was achieved by mechanical alloying of blended elemental Cu, In, Ga, and Se powders in a planetary ball mill. X-ray diffraction and transmission electron microscopy and diffraction techniques were employed to follow the structural evolution during milling. It was observed that, depending upon the milling conditions, either a metastable cubic or a stable tetragonal phase was produced. The grain size of the mechanically alloyed powder was about 10 nm. The mechanically alloyed powder was consolidated to full density by hot isostatic pressing the powder at 750 °C and 100 MPa for 2 h. Irrespective of the nature of the phase in the starting powder, the hot isostatically pressed compact contained the well-recrystallized tetragonal CuIn0.7Ga0.3Se2 phase with a grain size of about 50 nm.

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 800
Author(s):  
Vladimír Girman ◽  
Maksym Lisnichuk ◽  
Daria Yudina ◽  
Miloš Matvija ◽  
Pavol Sovák ◽  
...  

In the present study, the effect of wet mechanical alloying (MA) on the glass-forming ability (GFA) of Co43Fe20X5.5B31.5 (X = Ta, W) alloys was studied. The structural evolution during MA was investigated using high-energy X-ray diffraction, X-ray absorption spectroscopy, high-resolution transmission electron microscopy and magnetic measurements. Pair distribution function and extended X-ray absorption fine structure spectroscopy were used to characterize local atomic structure at various stages of MA. Besides structural changes, the magnetic properties of both compositions were investigated employing a vibrating sample magnetometer and thermomagnetic measurements. It was shown that using hexane as a process control agent during wet MA resulted in the formation of fully amorphous Co-Fe-Ta-B powder material at a shorter milling time (100 h) as compared to dry MA. It has also been shown that substituting Ta with W effectively suppresses GFA. After 100 h of MA of Co-Fe-W-B mixture, a nanocomposite material consisting of amorphous and nanocrystalline bcc-W phase was synthesized.


2012 ◽  
Vol 531-532 ◽  
pp. 490-495
Author(s):  
Jun Hong Zhang ◽  
Guo Hui Xu ◽  
Ya Juan Xu ◽  
Yue Hui He

Blended elemental powders with the nominal compositions (at%) of Ti50Al50, was mechanically alloyed in a planetary ball milling system for up to 100h, an amorphous Ti50Al50 phase was obtained in the process. The amorphization process as a function of time of milling was monitored by scanning electron microscope, X-ray diffraction and transmission electron microscope. It is shown that, as first, Al atoms diffuse into the host lattice of hexagonal Ti; subsequently, the milling accumulates a critical density of disorder that causes the Ti (Al) crystalline phase to collapse into an amorphous phase, it is suggested the grain size condition for formation of amorphous phase is 12nm. On the basis of thermodynamic models, the formation of the amorphous phase is discussed.


1991 ◽  
Vol 225 ◽  
Author(s):  
D. B. Knorr ◽  
K. P. Rodbell ◽  
D. P. Tracy

ABSTRACTPure aluminum films are deposited under a variety of conditions to vary the crystallographic texture. After patterning and annealing at 400°C for 1 hour, electromigration tests are performed at several temperatures. Failure data are compared on the basis of t50 and standard deviation. Microstructure is quantified by transmission electron microscopy for grain size and grain size distribution and by X-ray diffraction for texture. A strong (111) texture significantly improves the electromigration lifetime and decreases the standard deviation in time to failure. This improvement correlates with both the fraction and sharpness of the (111) texture component.


2010 ◽  
Vol 654-656 ◽  
pp. 1106-1109
Author(s):  
Ya Qiong He ◽  
Chang Hui Mao ◽  
Jian Yang

Nanocrystalline Fe-Co alloy powders, which were prepared by high-energy mechanical milling, were nitrided under the mixing gas of NH3/H2 in the temperature range from 380°C to 510°C. X-ray diffraction (XRD) was used to analyze the grain size and reaction during the processing. The magnetic properties of the nitrided powders were measured by Vibrating Sample Magnetometer (VSM). The results show that with the appearance of Fe4N phase after nitride treatment, and the grain-size of FeCo phase decreases with the increase of nitridation temperature between 380°C to 450°C.The saturation magnetization of nitrided alloy powder treated at 480°C is about 18% higher than that of the initial Fe-Co alloy powder, accompanied by the reduction of the coercivity. Transmission electron microscope (TEM) was used, attempting to further analyze the effect of Fe4N phase on microstructure and magnetic properties of the powder mixtures.


1992 ◽  
Vol 286 ◽  
Author(s):  
C. M. Foster ◽  
G. R. Bai ◽  
J. C. Parker ◽  
M. N. Ali

ABSTRACTNanophase (n-) ZrO2 was produced in its pure and partially stabilized form by the gas-phase condensation method. The material was examined by x-ray diffraction and Raman scattering to obtain information on the structural evolution of the material during sintering. Two types of Y2O3 doped ZrO2 nanophase materials were made one by co-deposition of n-Y2O3 and n-ZrO2 in a consecutive manner and the second by mechanically mixing n-Y2O3 and n-ZrO2. We have determined that the co-deposition process is the most effect means of doping the n-ZrO2.


2011 ◽  
Vol 194-196 ◽  
pp. 665-668
Author(s):  
Chun Huan Chen ◽  
Rui Ming Ren

In order to synthesize WC-Co nanopowders through an integrated mechanical and thermal activation process, WO3-Co2O3-C nanopowders need to be obtained first. It is critical how to obtain the WO3-Co2O3-C nanopowders efficiently. The effect of processing parameters on the grain size during high-energy-milling of WO3-Co2O3-C mixed powders was studied via X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the grain size of reactants can be effectively decreased with increasing the milling time, rotation speed, and charge ratio. After a certain time milling, both WO3 and C powders achieve nano-level in grain size and mixed homogeneously. The appropriate milling parameters for fabricating nanosized WO3+C+Co2O3 powders are suggested to be 4 to 8 hours of milling time, 400 RPM of rotation speed, and 40:1 to 60:1 of charge ratio.


2013 ◽  
Vol 275-277 ◽  
pp. 1952-1955
Author(s):  
Ling Fang Jin ◽  
Xing Zhong Li

New functional nanocomposite FePt:C thin films with FePt underlayers were synthesized by noneptaxial growth. The effect of the FePt layer on the ordering, orientation and magnetic properties of the composite layer has been investigated by adjusting FePt underlayer thickness from 2 nm to 14 nm. Transmission electron microscopy (TEM), together with x-ray diffraction (XRD), has been used to check the growth of the double-layered films and to study the microstructure, including the grain size, shape, orientation and distribution. XRD scans reveal that the orientation of the films was dependent on FePt underlayer thickness. In this paper, the TEM studies of both single-layered nonepitaxially grown FePt and FePt:C composite L10 phase and double-layered deposition FePt:C/FePt are presented.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2767 ◽  
Author(s):  
Chenchen Jiang ◽  
Qiuzhi Gao ◽  
Hailian Zhang ◽  
Ziyun Liu ◽  
Huijun Li

Microstructural evolutions of the 4Al alumina-forming austenitic steel after cold rolling with different reductions from 5% to 30% and then annealing were investigated using electron backscattering diffraction (EBSD), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile properties and hardness were also measured. The results show that the average grain size gradually decreases with an increase in the cold-rolling reduction. The low angle grain boundaries (LAGBs) are dominant in the cold-rolled samples, but high angle grain boundaries (HAGBs) form in the annealed samples, indicating that the grains are refined under the action of dislocations. During cold rolling, high-density dislocations are initially introduced in the samples, which contributes to a large number of dislocations remaining after annealing. With the sustaining increase in cold-rolled deformation, the samples exhibit more excellent tensile strength and hardness due to the decrease in grain size and increase in dislocation density, especially for the samples subjected to 30% cold-rolling reduction. The contribution of dislocations on yield strength is more than 60%.


2012 ◽  
Vol 21 (01) ◽  
pp. 1250002 ◽  
Author(s):  
NGUYEN MANH HUNG ◽  
LAM THI HANG ◽  
NGUYEN VAN KHANH ◽  
DU THI XUAN THAO ◽  
NGUYEN VAN MINH

We investigate the effects of calcination time and concentration of solution on the structure, as well as optical properties in ZnWO4 nanopowder prepared by hydrothermal method. The prepared powder were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman scattering, optical absorption and photoluminescent spectroscopy (PL). It is shown that the grain size and morphology of ZnWO4 nanopowder can be controlled by adjusting the reaction time as well as the concentration of the solution. The resultant sample is a pure phase of ZnWO4 without any impurities. The result showed that the optical property of ZnWO4 nanopowders depend on their grain size. The optical band gap becomes narrower as the reaction time or concentration of solution is increased. The improved PL properties of the ZnWO4 crystallites can be obtained with the optimal concentration of the solution.


Sign in / Sign up

Export Citation Format

Share Document