A new route to bulk nanocrystalline materials

2003 ◽  
Vol 18 (8) ◽  
pp. 1757-1760 ◽  
Author(s):  
Jian-Qing Su ◽  
Tracy W. Nelson ◽  
Colin J. Sterling

Despite their interesting properties, nanostructured materials have found limited use as a result of the cost of preparation and the difficulty in scaling up. Herein, the authors report a technique, friction stir processing (FSP), to refine grain sizes to a nanoscale. Nanocrystalline 7075 Al with an average grain size of 100 nm was successfully obtained using FSP. It may be possible to further control the microstructure of the processed material by changing the processing parameters and the cooling rate. In principle, by applying multiple overlapping passes, it should be possible to produce any desired size thin sheet to nanostructure using this technique. We expect that the FSP technique may pave the way to large-scale structural applications of nanostructured metals and alloys.

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5565
Author(s):  
Matthew A. Duarte ◽  
Vivek Mishra ◽  
Chris Dames ◽  
Yasuhiro Kodera ◽  
Javier E. Garay

Producing bulk AlN with grain sizes in the nano regime and measuring its thermal conductivity is an important milestone in the development of materials for high energy optical applications. We present the synthesis and subsequent densification of nano-AlN powder to produce bulk nanocrystalline AlN. The nanopowder is synthesized by converting transition alumina (δ-Al2O3) with <40 nm grain size to AlN using a carbon free reduction/nitridation process. We consolidated the nano-AlN powder using current activated pressure assisted densification (CAPAD) and achieved a relative density of 98% at 1300 °C with average grain size, d¯~125 nm. By contrast, high quality commercially available AlN powder yields densities ~75% under the same CAPAD conditions. We used the 3-ω method to measure the thermal conductivity, κ of two nanocrystalline samples, 91% dense, d¯ = 110 nm and 99% dense, d¯ = 220 nm, respectively. The dense sample with 220 nm grains has a measured κ = 43 W/(m·K) at room temperature, which is relatively high for a nanocrystalline ceramic, but still low compared to single crystal and large grain sized polycrystalline AlN which can exceed 300 W/(m·K). The reduction in κ in both samples is understood as a combination of grain boundary scattering and porosity effects. We believe that these are finest d¯ reported in bulk dense AlN and is the first report of thermal conductivity for AlN with ≤220 nm grain size. The obtained κ values are higher than the vast majority of conventional optical materials, demonstrating the advantage of AlN for high-energy optical applications.


2013 ◽  
Vol 58 (1) ◽  
pp. 95-98 ◽  
Author(s):  
M. Zielinska ◽  
J. Sieniawski

Superalloy René 77 is very wide used for turbine blades, turbine disks of aircraft engines which work up to 1050°C. These elements are generally produced by the investment casting method. Turbine blades produced by conventional precision casting methods have coarse and inhomogeneous grain structure. Such a material often does not fulfil basic requirements, which concern mechanical properties for the stuff used in aeronautical engineering. The incorporation of controlled grain size improved mechanical properties. This control of grain size in the casting operation was accomplished by the control of processing parameters such as casting temperature, mould preheating temperature, and the use of grain nucleates in the face of the mould. For nickel and cobalt based superalloys, it was found that cobalt aluminate (CoAl2O4) has the best nucleating effect. The objective of this work was to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties at high temperature of nickel based superalloy René 77. For this purpose, the ceramic moulds were made with different concentration of cobalt aluminate in the primary slurry was from 0 to 10% mass. in zirconium flour. Stepped and cylindrical samples were casted for microstructure and mechanical examinations. The average grain size of the matrix ( phase), was determined on the stepped samples. The influence of surface modification on the grain size of up to section thickness was considered. The microstructure investigations with the use of light microscopy and scanning electron microscopy (SEM) enable to examine the influence of the surface modification on the morphology of ’ phase and carbides precipitations. Verification of the influence of CoAl2O4 on the mechanical properties of castings were investigated on the basis of results obtained form creep tests.


2000 ◽  
Vol 151 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Stephan Wild-Eck ◽  
Willi Zimmermann

Two large-scale surveys looking at attitudes towards forests, forestry and forest policy in the second half ofthe nineties have been carried out. This work was done on behalf of the Swiss Confederation by the Chair of Forest Policy and Forest Economics of the Federal Institute of Technology (ETH) in Zurich. Not only did the two studies use very different methods, but the results also varied greatly as far as infrastructure and basic conditions were concerned. One of the main differences between the two studies was the fact that the first dealt only with mountainous areas, whereas the second was carried out on the whole Swiss population. The results of the studies reflect these differences:each produced its own specific findings. Where the same (or similar) questions were asked, the answers highlight not only how the attitudes of those questioned differ, but also views that they hold in common. Both surveys showed positive attitudes towards forests in general, as well as a deep-seated appreciation ofthe forest as a recreational area, and a positive approach to tending. Detailed results of the two surveys will be available in the near future.


1999 ◽  
Vol 39 (10-11) ◽  
pp. 289-295
Author(s):  
Saleh Al-Muzaini

The Shuaiba Industrial Area (SIA) is located about 50 km south of Kuwait City. It accommodates most of the large-scale industries in Kuwait. The total area of the SIA (both eastern and western sectors) is about 22.98 million m2. Fifteen plants are located in the eastern sector and 23 in the western sector, including two petrochemical companies, three refineries, two power plants, a melamine company, an industrial gas corporation, a paper products company and, two steam electricity generating stations, in addition to several other industries. Therefore, only 30 percent of the land in the SIA's eastern sector and 70 percent of land in the SIA's western sector is available for future expansion. Presently, industries in the SIA generate approximately 204,000 t of solid waste. With future development in the industries in the SIA, the estimated quantities will reach 240,000 t. The Shuaiba Area Authority (SAA), a governmental regulatory body responsible for planning and development in the SIA, has recognized the problem of solid waste and has developed an industrial waste minimization program. This program would help to reduce the quantity of waste generated within the SIA and thereby reduce the cost of waste management. This paper presents a description of the waste minimization program and how it is to be implemented by major petroleum companies. The protocols employed in the waste minimization program are detailed.


Author(s):  
Zheng Zhou ◽  
Erik Saule ◽  
Hasan Metin Aktulga ◽  
Chao Yang ◽  
Esmond G. Ng ◽  
...  

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110294
Author(s):  
Khaled Abd El-Aziz ◽  
Emad M Ahmed ◽  
Abdulaziz H Alghtani ◽  
Bassem F Felemban ◽  
Hafiz T Ali ◽  
...  

Aluminum alloys are the most essential part of all shaped castings manufactured, mainly in the automotive, food industry, and structural applications. There is little consensus as to the precise relationship between grain size after grain refinement and corrosion resistance; conflicting conclusions have been published showing that reduced grain size can decrease or increase corrosion resistance. The effect of Al–5Ti–1B grain refiner (GR alloy) with different percentages on the mechanical properties and corrosion behavior of Aluminum-magnesium-silicon alloy (Al–Mg–Si) was studied. The average grain size is determined according to the E112ASTM standard. The compressive test specimens were made as per ASTM: E8/E8M-16 standard to get their compressive properties. The bulk hardness using Vickers hardness testing machine at a load of 50 g. Electrochemical corrosion tests were carried out in 3.5 % NaCl solution using Autolab Potentiostat/Galvanostat (PGSTAT 30).The grain size of the Al–Mg–Si alloy was reduced from 82 to 46 µm by the addition of GR alloy. The morphology of α-Al dendrites changes from coarse dendritic structure to fine equiaxed grains due to the addition of GR alloy and segregation of Ti, which controls the growth of primary α-Al. In addition, the mechanical properties of the Al–Mg–Si alloy were improved by GR alloy addition. GR alloy addition to Al–Mg–Si alloy produced fine-grained structure and better hardness and compressive strength. The addition of GR alloy did not reveal any marked improvements in the corrosion properties of Al–Mg–Si alloy.


Technologies ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Ashish Jaiswal ◽  
Ashwin Ramesh Babu ◽  
Mohammad Zaki Zadeh ◽  
Debapriya Banerjee ◽  
Fillia Makedon

Self-supervised learning has gained popularity because of its ability to avoid the cost of annotating large-scale datasets. It is capable of adopting self-defined pseudolabels as supervision and use the learned representations for several downstream tasks. Specifically, contrastive learning has recently become a dominant component in self-supervised learning for computer vision, natural language processing (NLP), and other domains. It aims at embedding augmented versions of the same sample close to each other while trying to push away embeddings from different samples. This paper provides an extensive review of self-supervised methods that follow the contrastive approach. The work explains commonly used pretext tasks in a contrastive learning setup, followed by different architectures that have been proposed so far. Next, we present a performance comparison of different methods for multiple downstream tasks such as image classification, object detection, and action recognition. Finally, we conclude with the limitations of the current methods and the need for further techniques and future directions to make meaningful progress.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1646
Author(s):  
Jingya Xie ◽  
Wangcheng Ye ◽  
Linjie Zhou ◽  
Xuguang Guo ◽  
Xiaofei Zang ◽  
...  

In the last couple of decades, terahertz (THz) technologies, which lie in the frequency gap between the infrared and microwaves, have been greatly enhanced and investigated due to possible opportunities in a plethora of THz applications, such as imaging, security, and wireless communications. Photonics has led the way to the generation, modulation, and detection of THz waves such as the photomixing technique. In tandem with these investigations, researchers have been exploring ways to use silicon photonics technologies for THz applications to leverage the cost-effective large-scale fabrication and integration opportunities that it would enable. Although silicon photonics has enabled the implementation of a large number of optical components for practical use, for THz integrated systems, we still face several challenges associated with high-quality hybrid silicon lasers, conversion efficiency, device integration, and fabrication. This paper provides an overview of recent progress in THz technologies based on silicon photonics or hybrid silicon photonics, including THz generation, detection, phase modulation, intensity modulation, and passive components. As silicon-based electronic and photonic circuits are further approaching THz frequencies, one single chip with electronics, photonics, and THz functions seems inevitable, resulting in the ultimate dream of a THz electronic–photonic integrated circuit.


2021 ◽  
Vol 13 (15) ◽  
pp. 2877
Author(s):  
Yu Tao ◽  
Siting Xiong ◽  
Susan J. Conway ◽  
Jan-Peter Muller ◽  
Anthony Guimpier ◽  
...  

The lack of adequate stereo coverage and where available, lengthy processing time, various artefacts, and unsatisfactory quality and complexity of automating the selection of the best set of processing parameters, have long been big barriers for large-area planetary 3D mapping. In this paper, we propose a deep learning-based solution, called MADNet (Multi-scale generative Adversarial u-net with Dense convolutional and up-projection blocks), that avoids or resolves all of the above issues. We demonstrate the wide applicability of this technique with the ExoMars Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) 4.6 m/pixel images on Mars. Only a single input image and a coarse global 3D reference are required, without knowing any camera models or imaging parameters, to produce high-quality and high-resolution full-strip Digital Terrain Models (DTMs) in a few seconds. In this paper, we discuss technical details of the MADNet system and provide detailed comparisons and assessments of the results. The resultant MADNet 8 m/pixel CaSSIS DTMs are qualitatively very similar to the 1 m/pixel HiRISE DTMs. The resultant MADNet CaSSIS DTMs display excellent agreement with nested Mars Reconnaissance Orbiter Context Camera (CTX), Mars Express’s High-Resolution Stereo Camera (HRSC), and Mars Orbiter Laser Altimeter (MOLA) DTMs at large-scale, and meanwhile, show fairly good correlation with the High-Resolution Imaging Science Experiment (HiRISE) DTMs for fine-scale details. In addition, we show how MADNet outperforms traditional photogrammetric methods, both on speed and quality, for other datasets like HRSC, CTX, and HiRISE, without any parameter tuning or re-training of the model. We demonstrate the results for Oxia Planum (the landing site of the European Space Agency’s Rosalind Franklin ExoMars rover 2023) and a couple of sites of high scientific interest.


Sign in / Sign up

Export Citation Format

Share Document