Characterization of ballistically deformed tungsten [100]-, [111]-, and [110]-oriented single crystal penetrators by optical metallography, x-ray diffraction and transmission electron microscopy

2004 ◽  
Vol 19 (12) ◽  
pp. 3451-3462
Author(s):  
R.A. Herring ◽  
W.J. Bruchey ◽  
P.W. Kingman

Single-crystal penetrators of tungsten having orientations of [100], [111], and [110] were ballistically deformed into targets of standard armor material and characterized by optical metallography, x-ray diffraction, and transmission electron microscopy (TEM) methods, which showed significant differences in their deformation mechanisms and microstructures corresponding to their deformation performance as measured by the penetration of the target. The [100] single-crystal penetrator, which produced the most energy efficient deformation, provided a new, alternative mechanism for ballistic deformation by forming small single-crystal blocks, defined by {100} oriented cracks, which rotated during extrusion from the interior to the side of the penetrator while maintaining their single crystal integrity. The [111] single-crystal penetrator transferred mass along allowed, high-angle deformation planes to the penetrator’s side where a buildup of mass mushroomed the tip until the built-up mass let go along the sides of the penetrator, creating a wavy cavity. The [110] penetrator, which produced the least energy-efficient deformation, has only two allowed deformation planes, cracked and rotated to invoke other deformation planes.

1991 ◽  
Vol 35 (A) ◽  
pp. 593-599 ◽  
Author(s):  
M. Griffiths ◽  
J.E. Winegar ◽  
J.F. Mecke ◽  
R.A. Holt

AbstractX-ray diffraction (XRD) line-broadening analysis has been used to determine dislocation densities in zirconium alloys with hexagonal closepacked (hep) crystal structures and a complex distribution of dislocations reflecting the plastic, anisotropy of the material. The validity of the technique has been assessed by comparison with direct measurements of dislocation densities in deformed polycrystalline and neutron-irradiated single crystal material using transmission electron microscopy (TEM). The results show that-there is good agreement between the XRD and TEM for measurements on the deformed material whereas there is a large discrepancy for measurements on the irradiated single crystal; the XRD measurements significantly underestimating the TEM observations.


Author(s):  
Norihiko L. Okamoto ◽  
Katsushi Tanaka ◽  
Akira Yasuhara ◽  
Haruyuki Inui

The structure of the δ1pphase in the iron−zinc system has been refined by single-crystal synchrotron X-ray diffraction combined with scanning transmission electron microscopy. The large hexagonal unit cell of the δ1pphase with the space group ofP63/mmccomprises more or less regular (normal) Zn12icosahedra, disordered Zn12icosahedra, Zn16icosioctahedra and dangling Zn atoms that do not constitute any polyhedra. The unit cell contains 52 Fe and 504 Zn atoms so that the compound is expressed with the chemical formula of Fe13Zn126. All Fe atoms exclusively occupy the centre of normal and disordered icosahedra. Iron-centred normal icosahedra are linked to one another by face- and vertex-sharing forming two types of basal slabs, which are bridged with each other by face-sharing with icosioctahedra, whereas disordered icosahedra with positional disorder at their vertex sites are isolated from other polyhedra. The bonding features in the δ1pphase are discussed in comparison with those in the Γ and ζ phases in the iron−zinc system.


2005 ◽  
Vol 483-485 ◽  
pp. 781-784 ◽  
Author(s):  
Igor Matko ◽  
Bernard Chenevier ◽  
Roland Madar ◽  
H. Roussel ◽  
Stephane Coindeau ◽  
...  

QuaSiC TM substrates can be obtained by transferring a single crystal SiC layer onto a poly SiC substrate using the Smart Cut TM technology. The structure evolution of metal bonding (W-Si silicide) layer has been investigated by Transmission Electron Microscopy and X-ray diffraction. Results indicate that the metal bonding film is made of W5Si3. The film is discontinuous and strained. Annealing releases stress at least partially.


1987 ◽  
Vol 94 ◽  
Author(s):  
David A. Smith ◽  
Armin Segmüller ◽  
A. R. Taranko

ABSTRACTOriented deposits are commonplace in vapor deposited films. The origins of this behavior are not always clear. Various bcc metals (Fe, Nb, Mo, Ta, Cr) have been deposited onto single crystal fcc substrates (Au, Ni, MgO, Si, NaCI) which were selected with the intention of varying the character of the substrate-deposit interaction. The resulting structures have been characterized by transmission electron microscopy and grazing incidence x-ray diffraction. The observed variants of the cube-cube and Nishiyama-Wassermann orientation relationship can be understood in terms of minimization of misfit except when there is a weak interaction between substrate and deposit.


2012 ◽  
Vol 463-464 ◽  
pp. 777-780 ◽  
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang

Single-crystal Na0.5Bi0.5TiO3 nanoflakes have been successfully synthesized at 160°C with 8M NaOH by a hydrothermal method assisted by sodium nitrate. The as-prepared samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The presence of sodium nitrate was found to play an important role in the growth of single-crystal Na0.5Bi0.5TiO3 nanoflakes.


1992 ◽  
Vol 279 ◽  
Author(s):  
R. Jebasinski ◽  
S. Mantl ◽  
Chr. Dieker ◽  
H. Dederichs ◽  
L. Vescan ◽  
...  

ABSTRACTSynthesis of buried, epitaxial CoSi2 layers in Si1−xGex alloys (x =0.48 and x = 0.09) by 100 and 150 keV Co+ ion implantation and subsequent rapid thermal annealing was studied by X-Ray diffraction, Rutherford backscattering spectroscopy, He ion channeling, Auger Eectron Spectroscopy and Transmission Electron Microscopy. Buried single-crystal CoSi2 layers in the Si0.91Ge0.09 alloy containing ≈ 1 at% Ge were formed. The suicide formation causes an outdiffusion of Ge leading to an increase in the Ge concentration of the adjacent SiGe layers. In contrast, in the Si0.52Ge0.48 alloy no buried suicide layers could be produced.


2005 ◽  
Vol 475-479 ◽  
pp. 4175-4178 ◽  
Author(s):  
Cheng Shan Xue ◽  
Zhi Hua Dong ◽  
Hui Zhao Zhuang ◽  
Haiyong Gao ◽  
Yi'an Liu ◽  
...  

An extreme thin SiC buffer and Ga2O3 layer were deposited on silicon substrate sequentially with a r.f. magnetron sputtering system. Then the sample was annealed in the ambiance of ammonia at high temperature. Nanowires were found when the sample was tested with scanning electron microscopy (SEM). The composition of the nanowires is found to be GaN when the sample was tested with X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). A nanowire was observed with transmission electron microscopy and it was even and uniform, with diameter of about 60nm. And the nanowire can be testified of wurtzite single crystal structure by electron diffraction (ED) analysis attached to the TEM. The high-resolution transmission electron microscopy (HRTEM) analysis to the nanowire indicates that the nanowire was single crystal with very good quality.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


Sign in / Sign up

Export Citation Format

Share Document