scholarly journals Elastic contact to a coated half-space: Effective elastic modulus and real penetration

2004 ◽  
Vol 19 (2) ◽  
pp. 600-608 ◽  
Author(s):  
A. Perriot ◽  
E. Barthel

A new approach to the contact to coated elastic materials is presented. A relatively simple numerical algorithm based on an exact integral formulation of the elastic contact of an axisymmetric indenter to a coated substrate is detailed. It provides contact force and penetration as a function of the contact radius. Computations were carried out for substrate to layer moduli ratios ranging from 10−2 to 102 and various indenter shapes. Computed equivalent moduli showed good agreement with the Gao model for mismatch ratios ranging from 0.5 to 2. Beyond this range, substantial effects of inhomogeneous strain distribution are evidenced. An empirical function is proposed to fit the equivalent modulus. More importantly, if the indenter is not flat-ended, the simple relation between contact radius and penetration valid for homogeneous substrates breaks down. If neglected, this phenomenon leads to significant errors in the evaluation of the contact radius in depth-sensing indentation on coated substrates with large elastic modulus mismatch.

1992 ◽  
Vol 7 (3) ◽  
pp. 613-617 ◽  
Author(s):  
G.M. Pharr ◽  
W.C. Oliver ◽  
F.R. Brotzen

Results of Sneddon's analysis for the elastic contact between a rigid, axisymmetric punch and an elastic half space are used to show that a simple relationship exists among the contact stiffness, the contact area, and the elastic modulus that is not dependent on the geometry of the punch. The generality of the relationship has important implications for the measurement of mechanical properties using load and depth sensing indentation techniques and in the measurement of small contact areas such as those encountered in atomic force microscopy.


1999 ◽  
Vol 8 (3) ◽  
pp. 096369359900800
Author(s):  
P.K. Govindan Potti ◽  
B.Nageswara Rao ◽  
V.K. Srivastava

This paper improves the inherent flaw model proposed by Waddoups, Eisenman and Kaminski (known as the WEK model) to predict the strength of composite laminates with a circular hole. A simple relation is used for the inherent flaw length to improve the accuracy while evaluating the notched strength of laminates. A cubic equation is developed for the fracture strength of an infinite width plate having a circular hole. This model is applied to a host of experimental data from the open literature. Most of the experimental results are found to be in very good agreement with the analytically produced ones. The proposed model which is more simple could be more applicable for fracture strength evaluation of notched composite laminates.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 80
Author(s):  
Bo Zhang ◽  
Sizhi Zeng ◽  
Fenghua Tang ◽  
Shujun Hu ◽  
Qiang Zhou ◽  
...  

As a stimulus-sensitive material, the difference in composition, fabrication process, and influencing factors will have a great effect on the mechanical properties of a superelastic Ni-Ti shape memory alloy (SMA) wire, so the seismic performance of the self-centering steel brace with SMA wires may not be accurately obtained. In this paper, the cyclic tensile tests of a kind of SMA wire with a 1 mm diameter and special element composition were tested under multi-working conditions, which were pretreated by first tensioning to the 0.06 strain amplitude for 40 cycles, so the mechanical properties of the pretreated SMA wires can be simulated in detail. The accuracy of the numerical results with the improved model of Graesser’s theory was verified by a comparison to the experimental results. The experimental results show that the number of cycles has no significant effect on the mechanical properties of SMA wires after a certain number of cyclic tensile training. With the loading rate increasing, the pinch effect of the hysteresis curves will be enlarged, while the effective elastic modulus and slope of the transformation stresses in the process of loading and unloading are also increased, and the maximum energy dissipation capacity of the SMA wires appears at a loading rate of 0.675 mm/s. Moreover, with the initial strain increasing, the slope of the transformation stresses in the process of loading is increased, while the effective elastic modulus and slope of the transformation stresses in the process of unloading are decreased, and the maximum energy dissipation capacity appears at the initial strain of 0.0075. In addition, a good agreement between the test and numerical results is obtained by comparing with the hysteresis curves and energy dissipation values, so the numerical model is useful to predict the stress–strain relations at different stages. The test and numerical results will also provide a basis for the design of corresponding self-centering steel dampers.


2003 ◽  
Vol 14 (07) ◽  
pp. 945-954 ◽  
Author(s):  
MEHMET DİLAVER ◽  
SEMRA GÜNDÜÇ ◽  
MERAL AYDIN ◽  
YİĞİT GÜNDÜÇ

In this work we have considered the Taylor series expansion of the dynamic scaling relation of the magnetization with respect to small initial magnetization values in order to study the dynamic scaling behavior of two- and three-dimensional Ising models. We have used the literature values of the critical exponents and of the new dynamic exponent x0 to observe the dynamic finite-size scaling behavior of the time evolution of the magnetization during early stages of the Monte Carlo simulation. For the three-dimensional Ising model we have also presented that this method opens the possibility of calculating z and x0 separately. Our results show good agreement with the literature values. Measurements done on lattices with different sizes seem to give very good scaling.


Author(s):  
M. Bahrami ◽  
M. M. Yovanovich ◽  
J. R. Culham

The contact of rough spheres is of high interest in many tribological, thermal, and electrical fundamental analyses. Implementing the existing models is complex and requires iterative numerical solutions. In this paper a new model is presented and a general pressure distribution is proposed that encompasses the entire range of spherical rough contacts including the Hertzian limit. It is shown that the non-dimensional maximum contact pressure is the key parameter that controls the solution. Compact expressions are proposed for calculating the pressure distribution, radius of the contact area, elastic bulk deformation, and the compliance as functions of the governing non-dimensional parameters. The present model shows the same trends as those of the Greenwood and Tripp model. Correlations proposed for the contact radius and the compliance are compared with experimental data collected by others and good agreement is observed.


2013 ◽  
Vol 46 (1) ◽  
pp. 210-215 ◽  
Author(s):  
V. Tari ◽  
A. D. Rollett ◽  
H. Beladi

A new approach is presented for calculating the parent orientation from sets of variants of orientations produced by phase transformation. The parent austenite orientation is determined using the orientations of bainite variants that transformed from a single parent austenite grain. In this approach, the five known orientation relationships are used to back transform each observed bainite variant to all their potential face-centered-cubic (f.c.c.) parent orientations. A set of potential f.c.c. orientations has one representative from each bainite variant, and each set is assembled on the basis of minimum mutual misorientation. The set of back-transformed orientations with the minimum summation of mutual misorientation angle (SMMA) is selected as the most probable parent (austenite) orientation. The availability of multiple sets permits a confidence index to be calculated from the best and next best fits to a parent orientation. The results show good agreement between the measured parent austenite orientation and the calculated parent orientation having minimum SMMA.


2012 ◽  
Vol 323-325 ◽  
pp. 373-379 ◽  
Author(s):  
B. Rannou ◽  
M. Mollard ◽  
B. Bouchaud ◽  
J. Balmain ◽  
G. Bonnet ◽  
...  

The use of thermal barrier coating systems allows superalloys to withstand higher operating temperatures in aeroengine turbines. Aiming at providing oxidation protection to such substrates, an aluminum-rich layer is deposited to form the α-Al2O3scale over which a ceramic layer (i.e. YSZ layer) is applied to provide thermal insulation. A new approach is now being investigated within the FP7 European project « PARTICOAT », in which a single step process is employed by applying micro-sized aluminum particles. The particles are mixed in a binder and deposited by brushing or spraying on the substrate surface. During a heat treatment, the particles sinter and oxidize to form a top coat composed of hollow con-joint alumina spheres and simultaneously, an Al-rich diffusion zone is formed in the substrate. For a better understanding of the diffusion / growth processes, preliminary tests were carried out on pure nickel and Ni20Cr model alloys prior to further application on commercial superalloys. The effect of the heat treatment on the coating characteristics (number of layers, thickness, composition, homogeneity, etc.) was particularly investigated to emphasize the mechanisms of diffusion governing the growth of the coatings. The establishment of the diffused layers occurred very readily even at intermediate temperatures (650 and 700°C). However, the layers formed did not match perfectly with the thermodynamic modeling because of the quick incorporation of Ni into molten Al at intermediate temperatures (650°C). In contrast, at higher temperatures (700 and 1100°C) the phases predicted by Thermocalc are in good agreement with the observed thickness of the diffused layers. The incorporation of Cr as an alloying element restrained Al ingress by segregation of Cr even at very low temperatures aluminizing temperatures (625°C).


2001 ◽  
Vol 16 (6) ◽  
pp. 1660-1667 ◽  
Author(s):  
L. Riester ◽  
T. J. Bell ◽  
A. C. Fischer-Cripps

The present work shows how data obtained in a depth-sensing indentation test using a Knoop indenter may be analyzed to provide elastic modulus and hardness of the specimen material. The method takes into account the elastic recovery along the direction of the short axis of the residual impression as the indenter is removed. If elastic recovery is not accounted for, the elastic modulus and hardness are overestimated by an amount that depends on the ratio of E/H of the specimen material. The new method of analysis expresses the elastic recovery of the short diagonal of the residual impression into an equivalent face angle for one side of the Knoop indenter. Conventional methods of analysis using this corrected angle provide results for modulus and hardness that are consistent with those obtained with other types of indenters.


Author(s):  
Tribeni Roy ◽  
Anuj Sharma ◽  
Prabhat Ranjan ◽  
R. Balasubramaniam

Abstract Electrical discharge machined surfaces inherently possess recast layer on the surface with heat affected zone (HAZ) beneath it and these have a detrimental effect on the mechanical properties viz. hardness, elastic modulus, etc. It is very difficult to experimentally characterise each machined surface. Therefore, an attempt is made in this study to numerically calculate the mechanical properties of the parent material, HAZ and the recast layer on a hemispherical protruded micro feature fabricated by reverse micro EDM (RMEDM). In the 1st stage, nano indentation was performed to experimentally determine the load-displacement plots, elastic modulus and hardness of the parent material, HAZ and the recast layer. In the 2nd stage, FEA simulation was carried out to mimic the nano indentation process and determine the load-displacement plots for all the three cases viz. parent material, recast layer and HAZ. Results demonstrated that the load'displacement plots obtained from numerical model in each case was in good agreement with that of the experimental curves. Based on simulated load-displacement plots, hardness was also calculated for parent material, HAZ and the recast layer. A maximum of 11% error was observed between simulated values of hardness and experimentally determined values.


Sign in / Sign up

Export Citation Format

Share Document