Mg-based bulk glassy alloys with high strength above 900 MPa and plastic strain

2005 ◽  
Vol 20 (2) ◽  
pp. 394-400 ◽  
Author(s):  
Guangyin Yuan ◽  
Cunling Qin ◽  
Akihisa Inoue

Bulk metallic glasses with a maximum diameter of 2.5–5 mm were formed in Mg75Cu5Ni10Gd10, Mg70Cu15Ni5Gd10, and Mg65Cu20Ni5Gd10 systems by copper mold casting. There is a clear tendency for glass-forming ability (GFA) to increase with increasing solute content. These bulk glassy alloys exhibit a large supercooled liquid region (ΔTx) of 44–64 K, indicating high thermal stability of the supercooled liquid. The Young’s modulus, fracture strength, elastic elongation limit, and plastic strain are in the range of 54–59 GPa, 854–904 MPa, 1.50–1.55%, and 0.10–0.20%, respectively. The Mg65Cu20Ni5Gd10 alloy exhibited the highest values of Young’s modulus and strength, while the largest plastic strain was obtained for the Mg75Cu5Ni10Gd10 alloy. The bulk Mg–Cu–Ni–Gd-based metallic glasses exhibited distinct enhanced corrosion resistance compared to Mg65Cu25Gd10 glassy alloy in NaCl aqueous solutions. The fabrication of the Mg-based bulk glassy alloys exhibiting a high strength level of about 900 MPa and plastic strains of ∼0.2%, in conjunction with good corrosion resistance, indicates that the Mg-based bulk glassy alloys may be used as a new generation of structural material.

2005 ◽  
Vol 20 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Baolong Shen ◽  
Akihisa Inoue

Glassy [(Fe0.8Co0.1Ni0.1)0.75B0.2Si0.05]96Nb4 alloy rods with glass transition temperature of 835 K, followed by a large supercooled liquid region of 55 K were produced in the diameter range up to 2 mm by copper mold casting. The glassy alloy rods exhibit super-high true fracture strength of 4225 MPa combined with elastic strain of 0.02 and true plastic strain of 0.005. The super-high strength alloy simultaneously exhibits high magnetization of 1.1 T, low coercivity of 3 A/m, and high permeability of 1.8 × 104 at 1 kHz. The success of synthesizing a super-high strength Fe-based bulk glassy alloy with some compressive plastic strain and good soft magnetic properties is encouraging for future development of Fe-based bulk glassy alloys as new engineering and functional materials.


2004 ◽  
Vol 19 (10) ◽  
pp. 3046-3052 ◽  
Author(s):  
V. Ponnambalam ◽  
S. Joseph Poon ◽  
Gary J. Shiflet

The glass formability of high-manganese amorphous steel alloys reported earlier by us has been found to improve upon additions of yttrium and lanthanide elements, enabling the formation of bulk glassy samples with diameter thicknesses reaching 7 mm by casting. Based on extensive studies using different Ln additions and systematic measurements of alloy oxygen contents, the intrinsic roles of Y/Ln in attaining good glass formability in both the high-Mn alloys and previously reported high-Cr alloys are revealed. The yield strengths of the non-ferromagnetic glassy alloys obtained are estimated to be three times those of high-strength stainless steel alloys, and high elastic moduli in the range 150–200 GPa are measured. Furthermore, in the supercooled liquid regions, the glassy rods can be bent into various configurations by hand without fracturing. The observed plastic behavior together with the measured high mechanical strengths suggests that the present Fe–based bulk metallic glasses can potentially be developed as formable non-ferromagnetic amorphous steel alloys.


2016 ◽  
Vol 695 ◽  
pp. 157-163
Author(s):  
Mihai Branzei

The paper is focused on microstructure characterisation of five bulk metastable β-type Ti-based alloys, with improved mechanical properties, composed of non-toxic (bio inert) elements like: Nb, Ta, Cr, Zr, Ag, and In. These types of alloys designed in this study, are expected to have also higher corrosion resistance in biological media and good performance such as lower Young’s modulus of elasticity, greater strength, good workability, also in as cast state. However, high strength as well as low Young’s modulus is required for the implants subjected to cyclic loading under complicated stress conditions. Thus, the major aim is decreasing the Young’s modulus and increasing the tenacity of these alloys.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 929
Author(s):  
Dandan Liang ◽  
Jo-Chi Tseng ◽  
Xiaodi Liu ◽  
Yuanfei Cai ◽  
Gang Xu ◽  
...  

This study investigated the structural heterogeneity, mechanical property, electrochemical behavior, and passive film characteristics of Fe–Cr–Mo–W–C–B–Y metallic glasses (MGs), which were modified through annealing at different temperatures. Results showed that annealing MGs below the glass transition temperature enhanced corrosion resistance in HCl solution owing to a highly protective passive film formed, originating from the decreased free volume and the shrinkage of the first coordination shell, which was found by pair distribution function analysis. In contrast, the enlarged first coordination shell and nanoscale crystal-like clusters were identified for MGs annealed in the supercooled liquid region, which led to a destabilized passive film and thereby deteriorated corrosion resistance. This finding reveals the crucial role of structural heterogeneity in tuning the corrosion performance of MGs.


2021 ◽  
pp. 130308
Author(s):  
E.S.N. Lopes ◽  
L.U. dos Santos ◽  
R. Caram ◽  
K.N. Campo

2016 ◽  
Vol 22 (4) ◽  
pp. 841-844 ◽  
Author(s):  
Tye Langston

AbstractCarbon fibers exhibit exceptional properties such as high stiffness and specific strength, making them excellent reinforcements for composite materials. However, it is difficult to directly measure their tensile properties and estimates are often obtained by tensioning fiber bundles or composites. While these macro scale tests are informative for composite design, their results differ from that of direct testing of individual fibers. Furthermore, carbon filament strength also depends on other variables, including the test length, actual fiber diameter, and material flaw distribution. Single fiber tensile testing was performed on high-strength carbon fibers to determine the load and strain at failure. Scanning electron microscopy was also conducted to evaluate the fiber surface morphology and precisely measure each fiber’s diameter. Fiber strength was found to depend on the test gage length and in an effort to better understand the overall expected performance of these fibers at various lengths, statistical weak link scaling was performed. In addition, the true Young’s modulus was also determined by taking the system compliance into account. It was found that all properties (tensile strength, strain to failure, and Young’s modulus) matched very well with the manufacturers’ reported values at 20 mm gage lengths, but deviated significantly at other lengths.


Author(s):  
Tapabrata Maity ◽  
Konda Gokuldoss Prashanth ◽  
Özge Balcı ◽  
Grzegorz Cieślak ◽  
Maciej Spychalski ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 693 ◽  
Author(s):  
Myoungjae Lee ◽  
In-Su Kim ◽  
Young Hoon Moon ◽  
Hyun Sik Yoon ◽  
Chan Hee Park ◽  
...  

Metals for biomedical implant applications require a simultaneous achievement of high strength and low Young’s modulus from the viewpoints of mechanical properties. The American Society for Testing and Materials (ASTM) standards suggest two types of processing methods to confer such a mechanical performance to Ti-13Nb-13Zr alloy: solution treatment (ST) and capability aging (CA). This study elucidated the kinetics of CA process in Ti-13Nb-13Zr alloy. Microstructural evolution and mechanical change were investigated depending on the CA duration from 10 min to 6 h. The initial ST alloy possessed the full α′-martensitic structure, leading to a low strength, low Young’s modulus, and high ductility. Increasing CA duration increased mechanical strength and Young’s modulus in exchange for the reduction of ductility. Such a tendency is attributed to the decomposition of α′ martensite into (α+β) structure, particularly hard α precipitates. Mechanical compatibility (i.e., Young’s modulus compensated with a mechanical strength) of Ti-13Nb-13Zr alloy rarely increased by changing CA duration, suggestive of the intrinsic limit of static heat treatment.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 947
Author(s):  
Yonghui Yan ◽  
Xiaoli Liu ◽  
Hanqing Xiong ◽  
Jun Zhou ◽  
Hui Yu ◽  
...  

Mg-based metallic glasses (MGs) are widely studied due to their high elasticity and high strength originating from their amorphous nature. However, their further application in many potential fields is limited by poor corrosion resistance. In order to improve this property, an MgO nanoplate array layer is first constructed on the surface of Mg-based MGs by cyclic voltammetry (CV) treatments. In this situation, the corrosion resistance and hydrophilicity of the material are enhanced. Then, stearic acid (SA) can effectively adhere onto the surface of the MgO layer to form a superficial hydrophobic film with a water contact angle (WCA) of 131°. As a result, the SA coated MgO hydrophobic film improves the corrosion resistance of Mg-based MGs in 3.5 wt.% NaCl solution obviously. In addition, the effects of four technological parameters (solution concentration, sweep rate, cycle number, and reaction temperature) in the CV process on the morphology and size of nano-products are investigated in detail. The work proposes a new method for the creation of nanostructures on the surface of materials and provides a new idea to increase the corrosion resistance of MGs. The related method is expected to be applied in wider fields in future.


Sign in / Sign up

Export Citation Format

Share Document