Synthesis of calcium carbonate capsules in water-in-oil-in-water double emulsions

2008 ◽  
Vol 23 (1) ◽  
pp. 140-149 ◽  
Author(s):  
G.X. Wu ◽  
J. Ding ◽  
J.M. Xue

Hollow capsules have been intensively investigated due to their high capacity of encapsulating large quantities of guest molecules, making them promising candidate materials for various encapsulation applications. In this work, CaCO3 hollow capsules were successfully synthesized via an emulsion route. The interior hollow structure of the capsules was confirmed by using scanning electron microscopy and transmission electron microscopy (TEM). The vaterite polymorph of the as-synthesized CaCO3 capsules was determined by using x-ray diffraction, high-resolution TEM, and Fourier transform infrared spectroscopy. A self-assembly model was proposed to explain the formation mechanism of the vaterite capsules. By adjusting experimental parameters such as the internal solution amount and the surfactant amount of the double-emulsion system, the average capsule size could be adjusted accordingly. However, the increase in capsule size was at a compensation of size-uniformity degradation. The capsule size uniformity was then further optimized by increasing the magnetic stirring rate. The resultant vaterite capsules demonstrated biodegradability behavior after immersion in phosphate-buffered saline solution, leading to their promising applications in the area of controlled drug delivery.

Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1789
Author(s):  
Changseok Han ◽  
Mallikarjuna Nadagouda

Various compositions of barium carbonate (BaCO3) loaded polycaprolactone (PCL) composites were prepared, including 2.5/97.5, 10/90, 30/70, 50/50 and 90/10 (PCL/BaCO3), via re-precipitation technique. Small-scale column tests were conducted to study the efficiency of sulfate removal using the PCL/BaCO3 composites. The composites before and after their use to remove sulfate were extensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), and thermogravimetric analysis (TGA). As PCL is a biodegradable polymer, these composites are environmentally friendly and have several advantages over barium sulfate precipitation in overcoming clogging issues in filters or resins due to collection of natural organic matter (NOM). The media used in this study exhibited high capacity and was able to remove more than 90% sulfate from synthetic sulfate containing waters and NOM samples collected from the Ohio River.


Soft Matter ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. 3096-3104
Author(s):  
Valeria Castelletto ◽  
Jani Seitsonen ◽  
Janne Ruokolainen ◽  
Ian W. Hamley

A designed surfactant-like peptide is shown, using a combination of cryogenic-transmission electron microscopy and small-angle X-ray scattering, to have remarkable pH-dependent self-assembly properties.


2010 ◽  
Vol 43 (5) ◽  
pp. 990-997 ◽  
Author(s):  
Jie Ma ◽  
Qingsheng Wu

A facile oxides–hydrothermal (O–HT) method is demonstrated to prepare high-purity monazite-type LaPO4nanomaterials. In this approach, La2O3and P2O5powder are first directly used as precursors under additive-free hydrothermal conditions. The as-prepared samples are characterized with X-ray diffraction, Fourier transform IR spectroscopy, thermogravimetry, scanning electron microscopy, transmission electron microscopy (high-resolution TEM, energy dispersive spectroscopy) and selected-area electron diffraction. The typical sample obtained at 433 K in 24 h comprises uniform single-crystal nanofibres with a diameter of ∼15–28 nm and an aspect ratio of 30–50. The influences of treatment time, synthesis temperature and P/La molar ratio are investigated. The phase transition from hexagonal hydrate to monoclinic anhydrous lanthanum phosphate and the growth process of nanofibres are revealed by the experimental results. The formation mechanism of the monoclinic LaPO4is discussed. The result indicates that the P/La ratio does not influence the composition and crystal phase but changes the morphology of the product in the O–HT system.


2016 ◽  
Vol 22 (S5) ◽  
pp. 36-37
Author(s):  
Arnaud Demortiere ◽  
Charudatta Phatak ◽  
Andras Kovacs ◽  
Jan Caron ◽  
Nikita Repnin ◽  
...  

2018 ◽  
Vol 71 (6) ◽  
pp. 463 ◽  
Author(s):  
Tamer El Malah ◽  
Hany F. Nour

The copper(i)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction has been efficiently utilized to synthesize a series of dendrons with amino functionalities. The aminodendrons successfully underwent azodimerization to furnish a series of pyridyl- and phenyl-based azodendrimers with peripheral alkyl or ether side chain substituents. The molecular structures of the azodendrimers were fully assigned using different spectroscopic techniques, such as 1H NMR and 13C NMR, and the molecular weights were determined using MALDI-TOF mass spectrometry. The molecular self-assembly of the azodendrimers was investigated by scanning electron microscopy and transmission electron microscopy, which revealed the formation of highly ordered and uniform self-assembled nanofibres.


Soft Matter ◽  
2018 ◽  
Vol 14 (25) ◽  
pp. 5256-5269 ◽  
Author(s):  
H. v. Berlepsch ◽  
B. N. S. Thota ◽  
M. Wyszogrodzka ◽  
S. de Carlo ◽  
R. Haag ◽  
...  

A series of novel non-ionic amphiphiles with dendritic oligoglycerol head groups and lipophilic/fluorophilic tail segments, comprising single or double tail alkyl chains, C8F17-perfluoro rod segments as well as flexible spacer groups were designed and their supramolecular behavior characterised by cryo-transmission electron microscopy and tomography.


1997 ◽  
Vol 3 (S2) ◽  
pp. 1085-1086
Author(s):  
T. Kamino ◽  
T. Yaguchi ◽  
M. Tomita ◽  
Y. Yasutomi ◽  
K. Hidaka

The results of our previous studies revealed that the specimen heating holder with the heating elements of spiral shaped fine metal wires of high melting point enable us to observe high resolution transmission electron microscopy(TEM) images at elevated temperatures.In fact, the holder was applied for high resolution TEM study of a formation of SiC crystal at 1500°C and a surface reconstruction of Au deposited Si particle at 1000°C successfully. However, because the heating holder was single tilt type, there was a certain limitation in its application.In this paper, development of a double tilt specimen heating holder with a heating element of spiral shaped fine metal wire and its application for the study of microstructural changes of Si3N4 during sintering at very high temperature.Photograph of the newly developed double tilt specimen heating holder is shown in Fig. 1. The heating element is mounted on the electrically isolated tilting frame of the holder and the heating current is supplied via tilting rod which is also electrically isolated from other parts of the holder.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 622 ◽  
Author(s):  
Dorota Lachowicz ◽  
Przemyslaw Mielczarek ◽  
Roma Wirecka ◽  
Katarzyna Berent ◽  
Anna Karewicz ◽  
...  

A cationic derivative of pullulan was obtained by grafting reaction and used together with dextran sulfate to form polysaccharide-based nanohydrogel cross-linked via electrostatic interactions between polyions. Due to the polycation-polyanion interactions nanohydrogel particles were formed instantly and spontaneously in water. The nanoparticles were colloidally stable and their size and surface charge could be controlled by the polycation/polyanion ratio. The morphology of the obtained particles was visualized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The resulting structures were spherical, with hydrodynamic diameters in the range of 100–150 nm. The binding constant (Ka) of a model drug, piroxicam, to the cationic pullulan (C-PUL) was determined by spectrophotometric measurements. The value of Ka was calculated according to the Benesi—Hildebrand equation to be (3.6 ± 0.2) × 103 M−1. After binding to cationic pullulan, piroxicam was effectively entrapped inside the nanohydrogel particles and released in a controlled way. The obtained system was efficiently taken up by cells and was shown to be biocompatible.


2011 ◽  
Vol 675-677 ◽  
pp. 247-250 ◽  
Author(s):  
Yoshio Tanita ◽  
Daiji Matsui ◽  
Hiroshi Fukushima

Micro- and nano-structures of the Cr-Mo electroplated layers were studied mainly by Transmission Electron Microscopy (TEM), High Resolution TEM (HRTEM) and Positron Annihilation Lifetime Spectroscopy (PALS). These electroplated layers which were deposited in Cr-Mo electrolyte containing an organic sulfonic acid, showed surface structures having severe ups and downs of small crystal grains. Both selected area diffraction and dark-field image of TEM confirmed the presence of very small crystal grains of less than 50 nm. These small crystal grains exhibited textured structure when the electrolyte contained an organic sulfonic catalyst. PALS results indicated the presence of high density nano-size voids, and HRTEM analysis confirmed the presence of high density voids of 1 nm to 2 nm in diameter. Size and density of these nano-voids increased with the amount of catalyst in the electrolyte.


Sign in / Sign up

Export Citation Format

Share Document