Corrosion resistance of ZrO2–Zr-coated biodegradable surgical magnesium alloy

2008 ◽  
Vol 23 (2) ◽  
pp. 312-319 ◽  
Author(s):  
Yunchang Xin ◽  
Chenglong Liu ◽  
Wenjun Zhang ◽  
Kaifu Huo ◽  
Guoyi Tang ◽  
...  

Magnesium alloys are potential biodegradable biomaterials in hard tissue implants. However, the fast degradation rate in the biological environment has hampered widespread applications. We propose to use a ZrO2 coating in conjunction with a Zr transition layer to improve the corrosion resistance of AZ91 magnesium alloy. X-ray photoelectron spectroscopy discloses that the coating is composed of ZrO2. The Vickers hardness measurement demonstrates that the surface hardness of the alloy is significantly enhanced. The electrochemical behavior of the coated sample is systematically evaluated by means of potentiodynamic polarization, open-circuit potential evolution, and electrochemical impedance spectroscopy. The electrochemical results indicate that the corrosion resistance of the coated alloy is enhanced significantly, and the electrode-controlled processes in a coated alloy–solution system are discussed.

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1357 ◽  
Author(s):  
Jaromír Wasserbauer ◽  
Martin Buchtík ◽  
Jakub Tkacz ◽  
Stanislava Fintová ◽  
Jozef Minda ◽  
...  

The corrosion behavior of duplex Ni-P coatings deposited on AZ91 magnesium alloy was studied. The electroless deposition process of duplex Ni-P coating consisted in the preparation of low-phosphorus Ni-P coating (5.7 wt.% of P), which served as a bond coating and high-phosphorus Ni-P coating (11.5 wt.% of P) deposited on it. The duplex Ni-P coatings with the thickness of 25, 50, 75 and 100 µm were deposited on AZ91 magnesium alloy. The electrochemical corrosion behavior of coated AZ91 magnesium alloy was investigated by electrochemical impedance spectroscopy and potentiodynamic polarization method in 0.1 M NaCl. Obtained results showed a significant improvement in the corrosion resistance of coated specimens when compared to uncoated AZ91 magnesium alloy. From the results of the immersion tests in 3.5 wt.% NaCl, 10% solution of HCl and NaOH and 5% neutral salt spray, a noticeable increase in the corrosion resistance with the increasing thickness of the Ni-P coating was observed.


2007 ◽  
Vol 22 (7) ◽  
pp. 2004-2011 ◽  
Author(s):  
Yunchang Xin ◽  
Chenglong Liu ◽  
Xinmeng Zhang ◽  
Guoyi Tang ◽  
Xiubo Tian ◽  
...  

Fast degradation rates in the physiological environment constitute the main limitation for magnesium alloys used in biodegradable hard tissue implants. In this work, the corrosion behavior of AZ91 magnesium alloy in simulated body fluids (SBF) was systematically investigated to determine its performance in a physiological environment. The influence of the main constituent phases on the corrosion behavior was studied by in situ visual observation and scanning electron microscopy. Energy dispersive x-ray spectrometry and Fourier transfer infrared spectroscopy revealed that both calcium and magnesium phosphates are present in the corroded products besides magnesium oxide. Electrochemical methods including open circuit potential evolution and electrochemical impedance spectroscopy were used to investigate the mechanism. The corresponding electrode controlled processes and evolution of the corrosion products layer were discussed. The degradation rate after immersion in SBF for seven days was calculated from both the weight loss and hydrogen evolution methods.


2020 ◽  
Vol 85 (10) ◽  
pp. 1317-1328
Author(s):  
López Forero ◽  
Ana Loperena ◽  
Ivana Lehr ◽  
Lorena Brugnoni ◽  
Silvana Saidman

A duplex coating was formed under potentiostatic conditions on magnesium alloy AZ91D in order to improve its corrosion resistance in a simulated physiological environment. The first layer was formed by anodization at low potentials in molybdate solution. The outer layer was a PPy film electrosynthesized in sodium salicylate solution. The conditions of the formation were determined to obtain a layer with globular morphology. The bilayer was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion protection properties of the coatings were examined in Ringer solution by monitoring the open circuit potential (OCP), polarization techniques, and electrochemical impedance spectroscopy (EIS). The obtained results showed that the bilayer improves the corrosion resistance of the substrate. Moreover, the duplex coating presented better anticorrosive properties than a single PPy film. Afterwards, the bilayer was modified by cementation of silver ions from a solution containing AgNO3. The modified electrode exhibited good antibacterial properties.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3515
Author(s):  
Andrzej Fijołek ◽  
Janusz Lelito ◽  
Halina Krawiec ◽  
Jagoda Ryba ◽  
Łukasz Rogal

The aim of this work was to monitor the corrosion rate of the Mg72Zn24Ca4 and Zn87Mg9Ca4 alloys. The purity of the alloying elements was 99.9%. The melt process was carried out in an induction furnace. The melting process took place under the cover of an inert gas (argon). The copper form was flooded by liquid alloy. Then, in order to obtain ribbons, the cast alloy, in rod shape, was re-melted on the melt spinning machine. The corrosion resistance of both alloys has been determined on the basis of the following experiments: measurements of the evolution of OCP (open circuit potential), LSV (linear sweep voltamperometry) and EIS (electrochemical impedance spectroscopy). All corrosion tests were carried out in Ringer’s solution at 37 °C and pH 7.2. The corrosion tests have revealed that the zinc alloy, Zn87Mg9Ca4, exhibits significantly higher corrosion resistance in the Ringer solution compared to the magnesium alloy, Mg72Zn24Ca4. Moreover, it has been shown that the cathodic reaction proceeds faster on the surface of ribbons. EIS measurements show that the dissolution of Mg alloy proceeds with two steps: transfer of Mg2+ ions to the Ringer solution and then the formation of the corrosion products, which are deposited on the surface of magnesium alloy. It has been revealed, too, that for both bulk materials, diffusion of chloride ions through the corrosion product’s layer takes place.


2011 ◽  
Vol 686 ◽  
pp. 21-25
Author(s):  
Xian Long Cao ◽  
Fu Sheng Pan ◽  
Hong Da Deng ◽  
Wei Cai

This present work investigated the corrosion behavior of AZ31 magnesium alloy substrates pre-treated with bis-[triethoxysilylpropyl] tetrasulfide silane modified with cerium nitrate. The corrosion behavior of the pre-treated substrates in 0.005M sodium chloride solutions was assessed by potentiodynamic polarization, open circuit potential and electrochemical impedance spectroscopy (EIS). The results showed that the silane pre-treatments improved the corrosion resistance of the AZ31 magnesium alloy substrates in the presence of chloride ions. Especially the addition of cerium nitrate played an important role in reducing the corrosion activity.


Author(s):  
Talal Aljohani ◽  
Sami Aljadaan ◽  
Meteb Bin Rubayan ◽  
Fuad Khoshnaw

This study aims to investigate the effect of the processing parameters in plasma electrolytic oxidation (PEO) on the corrosion resistance of magnesium alloy type AZ91. The PEO coatings were prepared on the samples using alkaline-based electrolyte. Both unipolar and bipolar, different frequencies and duty cycles were applied. Corrosion tests, using potentiodynamic polarisation (PDP), linear and cyclic, and electrochemical impedance spectroscopy (EIS) techniques, were applied on the as-received and PEO coated samples. Scanning electron microscopy was used to investigate the surface morphology, e.g. micropores, as well as to measure the thickness of the coated layer with changing the processing parameters. The results show that the size of micropores is interrelated to the duty cycle percentage and current polarities, as the higher frequency causes thinner coating layers, with fewer micropores, consequently higher corrosion resistance. In addition, increasing the duty cycle, a denser and more compact coating was obtained. The XRD results showed missing peak of the α-Mg phase in a PEO coated sample using Bipolar, the highest frequency (1666 Hz) and the highest duty cycle (66.6%). The mils per year calculations showed that the PEO coated have lower corrosion rate by at least 8 times than the as-received alloy.


2018 ◽  
Vol 1148 ◽  
pp. 122-127 ◽  
Author(s):  
Charu Singh ◽  
S.K. Tiwari ◽  
Raghuvir Singh

Magnesium alloys are excellent choice for automobile, aerospace, and computer components owing to their light weight, unique physical and mechanical properties. However, poor corrosion resistance has restricted their applications in aggressive environments. The surface coating is one of the viable options to reduce the susceptibility of magnesium alloys to corrosion. The present study focuses on the effect of heat treatment of AZ91 magnesium alloy, for different durations at 400 °C, prior to electroless Ni-P deposition on corrosion resistance. The microstructure and elemental analysis of the heat-treated specimens are performed using SEM and EDS techniques respectively. It is observed that the duration of heat treatment has a significant effect on the surface morphology and microstructure of the alloy. The precipitates in the cast alloy (enriched with Mg and Al) fragmented and the transformed into a new Al and Zn rich phase, after 12 h heat treatment. The dissolution of precipitates, however, observed on heating further to 24 h and exhibited relatively a lesser corrosion current density. The dense electroless Ni-P deposition is formed on the alloy heat treated for 24 h. The corrosion behavior of the single Ni-P layer on the heat treated (for 12 h) and untreated alloy show a marked deterioration, as investigated by the anodic polarization and electrochemical impedance spectroscopy (EIS) techniques. Relatively a better corrosion performance is seen for the double-layer Ni-P deposition. The duplex layer coatings on the as cast and heat treated for 24 h at 400 °C substrates showed an improved corrosion resistance compared to that on the 12 h heat treated substrate.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 307 ◽  
Author(s):  
Na Wang ◽  
Xu Yin ◽  
Jing Zhang ◽  
Huiying Gao ◽  
Xinlin Diao ◽  
...  

In this paper, graphene oxide (GO) was grafted with sodium tripolyphosphate (STP) to achieve a new anti-corrosive pigment (STG) with homogenous dispersion in waterborne epoxy (EP). The results obtained from Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and X-ray Diffraction (XRD) revealed that STP was successfully combined with GO by chemical bonding. The corrosion resistance of EP, GO/EP and STG/EP coatings on carbon steel substrates was investigated via electrochemical impedance spectroscopy (EIS) and salt spray test. The EIS results showed that the impedance value of coating with 0.7 wt.% STG reached 1.019 × 109 Ω∙cm2, which was considerably higher than that of neat waterborne EP coatings. Salt spray test results revealed once again that STG (0.7 wt.%)/EP coating had superior corrosion resistance. Besides, the STG (0.7 wt.%)/EP coated sample showed the highest adhesion strength between coating and substrate.


Biosensors ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 138 ◽  
Author(s):  
Ewa Paradowska ◽  
Katarzyna Arkusz ◽  
Dorota G. Pijanowska

The goal of this research was to find the best conditions to prepare titanium dioxide nanotubes (TNTs) modified with gold nanoparticles (AuNPs). This paper, for the first time, reports on the influence of the parameters of cyclic voltammetry process (CV) -based AuNP deposition, i.e., the number of cycles and the concentration of gold salt solution, on corrosion resistance and the capacitance of TNTs. Another innovation was to fabricate AuNPs with well-formed spherical geometry and uniform distribution on TNTs. The AuNPs/TNTs were characterized using scanning electron microscopy, X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, and open-circuit potential measurement. From the obtained results, the correlation between the deposition process parameters, the AuNP diameters, and the electrical conductivity of the TNTs was found in a range from 14.3 ± 1.8 to 182.3 ± 51.7 nm. The size and amount of the AuNPs could be controlled by the number of deposition cycles and the concentration of the gold salt solution. The modification of TNTs using AuNPs facilitated electron transfer, increased the corrosion resistance, and caused better adsorption properties for bovine serum albumin.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6663
Author(s):  
Abhishek Saxena ◽  
R. K. Singh Raman

Coating of an organo-silane (Bis-1,2-(TriethoxySilyl)Ethane (BTSE)) has been observed to improve the corrosion resistance of magnesium alloy AZ91D. Three different types of surface preparations have been employed before condensing the silane coating on to the substrate. Corrosion resistance was investigated using electrochemical impedance spectroscopy (EIS). A specific alkali treatment of the substrate prior to the coating has been found to improve the corrosion resistance of the coated alloy, which has been attributed to the ability of the treatment in facilitating the condensation of a relatively compact siloxane film.


Sign in / Sign up

Export Citation Format

Share Document