Characteristics of copper indium diselenide nanowires embedded in porous alumina templates

2010 ◽  
Vol 25 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Piao Liu ◽  
Vijay P. Singh ◽  
Suresh Rajaputra ◽  
Sovannary Phok ◽  
Zhi Chen

Vertically aligned nanowire arrays of copper indium diselenide (CuInSe2 or CIS) of controllable diameter and length were fabricated by simultaneously electrodepositing Cu, In, and Se from an acid bath into the pores of anodized aluminum oxide (AAO) formed on top of an aluminum sheet. X-ray diffraction measurements revealed a preferential [112] orientation and the energy dispersive x-ray analysis (EDX) measurements indicated an overall composition close to stoichiometric CuInSe2. Ohmic contact to CIS was formed by depositing a 100 nm thick of gold layer on top, and thus a Schottky diode device of the Au/CIS nanowires/Al configuration was obtained. Analysis of the current–voltage characteristics of these devices yielded diode ideality factor and reverse saturate current density values slightly higher than those reported in the literature for bulk CIS/Al junctions. Capacitance–voltage measurements were performed on the diodes to get the estimates of space charge density and the junction potential.

2009 ◽  
Vol 67 ◽  
pp. 197-202 ◽  
Author(s):  
Kuldeep Rana ◽  
Anjan Sil ◽  
Subrata Ray

Carbon nanotubes (CNTs) have been synthesized by chemical decomposition of acetylene gas at 580°C and 650°C using catalyst of LiNi0.5Co0.5O2. The effect of decomposition temperature on structure of the CNTs is that, CNTs grown at 650°C have lower defects concentration and higher crystallinity as compared to that grown at 580°C. The porous anodized aluminum oxide (AAO) template (as substrate), catalyst particles and the CNTs grown were analyzed by FE-SEM. The pore diameter in the template lies in range of 30 - 80 nm. The CNTs have been analyzed by using Raman spectroscopy and X-ray diffraction techniques. The up-shift in G-band of graphitic sheet and larger full width at half maximum of the peak in the Raman spectra of the CNT in comparison to those observed for graphite are indicative of the structural modification. XRD results also indicate the structural modification in CNT based on the fact that d-value becomes 3.42 Å, which is larger than 3.35 Å for graphite. The tube diameters lie in the range of 12 - 50 nm.


2021 ◽  
Vol 33 (11) ◽  
pp. 2839-2844
Author(s):  
N. Benachour ◽  
S. Chouchane ◽  
J.P. Chopart

The zinc-nickel alloys were electrodeposited on stainless steel substrates during a chloride acid bath. The electroplating processes were investigated under a moderate perpendicular magnetic flux at uncommon temperatures. The coatings obtained were characterized by scanning microscopy (SEM) including EDX and X-ray diffraction (XRD). Chronopotentiometric curves were additionally implemented for electrochemical analysis. Structural analysis revealed that the obtained alloys consisted of a mix of the homogeneous phase γ-Ni3Zn22 and α-Zn-Ni at 70 ºC. The alloys variations observed within the chemical composition, crystallographic phases and morphology of the alloys. It is often explained particularly, by the progressive hydrogen reaction and therefore the evolution of the adsorbed intermediate species. The synergetic effect was significant at 70 ºC within the 1T field, including the appearance of normal co-deposition.


2014 ◽  
Vol 805 ◽  
pp. 272-278 ◽  
Author(s):  
Antonielly dos S. Barbosa ◽  
Antusia dos S. Barbosa ◽  
Meiry Glaucia F. Rodrigues

Much interest has been aroused in the application in industrial processes using zeolite membrane, due to its crystalline structure, and narrow pore diameters. These features enable the continuous separation of mixtures based on differences in molecular size and shape and also based on different adsorption properties. This paper reports the synthesis of MCM-22 zeolite membrane, using the method of secondary growth. The MCM-22 zeolite was synthesized by the hydrothermal method and characterized by spectroscopy Energy Dispersive X-ray (EDX), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM).The ceramic support (α-alumina) was prepared using the technique of forming powder and then subjected to the sintering temperature of 1400 °C/1h and characterized by XRD. The zeolite membrane preparation was performed by the method of secondary growth and characterized by XRD, SEM and mercury porosimetry. The obtained zeolite membrane could be confirmed by X-ray diffraction. From, the obtained SEM pictures it was possible to observe the formation of a homogeneous film on the zeolite surface of the ceramic support (α-alumina).


2016 ◽  
Vol 881 ◽  
pp. 77-82
Author(s):  
Afonso Chimanski ◽  
Amanda Martins Jordão ◽  
Paulo Francisco Cesar ◽  
Humberto Naoyuki Yoshimura

Dental prostheses made of ceramic composites infiltrated with glasses have been used due to their biocompatibility and possibility to mimic the natural teeth. In this study, the devitrification behavior of 20SiO2-25B2O3-25Al2O3-15La2O3-15TiO2 glass during the infiltration process in a porous alumina preform was investigated. Glass frits were prepared by melting the raw materials at 1500 °C for 60 min. The glass was infiltrated into the alumina preform at 1,150 or 1,200 °C for 60 min. The specimens were characterized by X-ray diffraction analysis and scanning electron microscopy. After the infiltration, it was possible to note that the devitrification process occurred in the remaining glass (excess glass that did not infiltrate in the preform), forming mostly aluminum borate and mullite crystalline phases. However, within the infiltrated composite no devitrification was noticed in the infiltrated glass. Possible explanations for this behavior are discussed.


2012 ◽  
Vol 557-559 ◽  
pp. 1687-1690
Author(s):  
Tong Liu ◽  
Qiang Li

A novel nano-TiO2 coating is prepared by vacuum dip-coating TiO2 sol–gel onto the anodized aluminum surface. The particles of TiO2 anatase is filled into the Al2O3 nano-pores formed by anodization. The structure and composition of the coatings are characterized by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The preponderant bacterium is identified as Pseudomonas lindanilytica strain IPL-1 through analysis of the sequences of S16 nRNA gene segment. In addition, the electrochemical results show that the TiO2 coatings significantly reduce the corrosion rate of Al substrates. The UV reflection spectroscopy is used to determine and analyze that the nano-TiO2 coatings could improve the light photo catalytic activity which decreases microbial influencing corrosion acceleration inhibition (MICI).


2007 ◽  
Vol 1012 ◽  
Author(s):  
Natale J. Ianno ◽  
Rodney J. Soukup ◽  
Tobin Santero ◽  
Chad Kamler ◽  
James Huguenin-Love ◽  
...  

AbstractAttempts to fabricate new CuIn1-xBxSe2 (CIBS) and CuBSe2 (CBS) thin-film materials have been complicated by the formation of interfering crystallites and by the loss of boron from the magnetron sputtered precursor alloys during the selenization and annealing processes. Raman and Auger spectroscopic analysis as well as x-ray diffraction studies show that the formation of boron selenide may be contributing to the difficulty in creating these new materials.


2011 ◽  
Vol 403-408 ◽  
pp. 1157-1162
Author(s):  
Firouzeh Karimi Moghadam ◽  
Meysam Hamzehlooei

Superscript text Subscript textOur study is to develop a general design of biosensors based on vertically aligned Carbon Nanotube (CNT) arrays. Glucose biosensor is selected as the model system to verify the design of biosensors. In the preliminary design, glucose oxidase (GOx) is attached to the walls of the porous alumina membrane by adsorption. Porous highly ordered anodized aluminum oxide (AAO) are used as templates. Deposited gold on both sides of template surfaces serve as a contact and prevent non-specific adhesion of GOx on the surface. In order to find out optimized thickness of gold coating, the redox reaction in([Fe(CN)6]3-/[Fe(CN)6]4-system is monitored by CV. Subsequently, enzymatic redox reaction in glucose solutions is also attempted by CV. We expect protein layers with GOx from a conductive network. To take advantage of the attractive properties of CNTs, the design of enzyme electrodes is modified by attaching CNT onto the sidewalls of AAO template nanopores and then immobilizing GOx to the sidewalls and tips of CNTs. Cobalt is used as a catalyst to fabricate CNTs. As a result, MWCNTs are fabricated inside the AAO templates by CCVD.


2015 ◽  
Vol 29 (31) ◽  
pp. 1550224 ◽  
Author(s):  
K. Maleki ◽  
S. Sanjabi ◽  
Z. Alemipour

The ordered ferromagnetic–antiferromagnetic [Formula: see text] alloy nanowires were fabricated successfully by alternating current (AC) electrodeposition into nanoporous anodized aluminum oxide (AAO). The NiMn alloy nanowires were deposited in a simple sulfate bath. Effect of bath composition on Mn content of electrodeposited nanowires as well as the thermal annealing effect on magnetic properties were explored. The magnetic properties of NiMn alloy nanowires were enhanced significantly, compared to corresponding bulk materials. Magnetic parameters, such as coercivity and saturation magnetization were decreased with increasing the Mn content. For thermal annealing process, it was found that these parameters were enhanced with increasing the temperature up to 300[Formula: see text]C, on the other hand, they were decreased with increasing the temperature to 500[Formula: see text]C. Moreover, the X-ray diffraction (XRD) patterns revealed that the FCC crystalline structure of Ni turns to an amorphous phase by increasing the Mn content in the nanowires, resulting in a significant reduction in the [Formula: see text].


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Patnamsetty Chidanandha Nagajyothi ◽  
Kisoo Yoo ◽  
Rajavaram Ramaraghavulu ◽  
Jaesool Shim

In this study, manganese tungstate (MW) and MW/graphene oxide (GO) composites were prepared by a facile hydrothermal synthesis at pH values of 7 and 12. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy were used for the structural, compositional, and morphological characterization of the nanoparticles (NPs). The XRD analysis revealed that the formation of monoclinic MnWO4 did not have impurities. The SEM and TEM analyses showed that the synthesized NPs were rod-shaped and well-distributed on the GO. The as-synthesized samples can be used as electrocatalysts for the urea oxidation reaction (UOR). The MW@GO-12 electrocatalyst exhibited higher current density values compared to other electrocatalysts. This study provides a new platform for synthesizing inexpensive nanocomposites as promising electrocatalysts for energy storage and conversion applications.


Sign in / Sign up

Export Citation Format

Share Document