The role of uncertainty quantification and propagation in accelerating the discovery of electrochemical functional materials

MRS Bulletin ◽  
2019 ◽  
Vol 44 (3) ◽  
pp. 204-212
Author(s):  
Gregory Houchins ◽  
Dilip Krishnamurthy ◽  
Venkatasubramanian Viswanathan

Abstract

Author(s):  
E.M. Waddell ◽  
J.N. Chapman ◽  
R.P. Ferrier

Dekkers and de Lang (1977) have discussed a practical method of realising differential phase contrast in a STEM. The method involves taking the difference signal from two semi-circular detectors placed symmetrically about the optic axis and subtending the same angle (2α) at the specimen as that of the cone of illumination. Such a system, or an obvious generalisation of it, namely a quadrant detector, has the characteristic of responding to the gradient of the phase of the specimen transmittance. In this paper we shall compare the performance of this type of system with that of a first moment detector (Waddell et al.1977).For a first moment detector the response function R(k) is of the form R(k) = ck where c is a constant, k is a position vector in the detector plane and the vector nature of R(k)indicates that two signals are produced. This type of system would produce an image signal given bywhere the specimen transmittance is given by a (r) exp (iϕ (r), r is a position vector in object space, ro the position of the probe, ⊛ represents a convolution integral and it has been assumed that we have a coherent probe, with a complex disturbance of the form b(r-ro) exp (iζ (r-ro)). Thus the image signal for a pure phase object imaged in a STEM using a first moment detector is b2 ⊛ ▽ø. Note that this puts no restrictions on the magnitude of the variation of the phase function, but does assume an infinite detector.


2021 ◽  
Vol 416 ◽  
pp. 129121
Author(s):  
Kai Yu ◽  
Bin Li ◽  
Huagui Zhang ◽  
Zhentao Wang ◽  
Wei Zhang ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 430
Author(s):  
Vasso Apostolopoulos ◽  
Joanna Bojarska ◽  
Tsun-Thai Chai ◽  
Sherif Elnagdy ◽  
Krzysztof Kaczmarek ◽  
...  

Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide “drugs” initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.


Biochar ◽  
2021 ◽  
Author(s):  
Qian Yang ◽  
Yongjie Wang ◽  
Huan Zhong

AbstractThe transformation of mercury (Hg) into the more toxic and bioaccumulative form methylmercury (MeHg) in soils and sediments can lead to the biomagnification of MeHg through the food chain, which poses ecological and health risks. In the last decade, biochar application, an in situ remediation technique, has been shown to be effective in mitigating the risks from Hg in soils and sediments. However, uncertainties associated with biochar use and its underlying mechanisms remain. Here, we summarize recent studies on the effects and advantages of biochar amendment related to Hg biogeochemistry and its bioavailability in soils and sediments and systematically analyze the progress made in understanding the underlying mechanisms responsible for reductions in Hg bioaccumulation. The existing literature indicates (1) that biochar application decreases the mobility of inorganic Hg in soils and sediments and (2) that biochar can reduce the bioavailability of MeHg and its accumulation in crops but has a complex effect on net MeHg production. In this review, two main mechanisms, a direct mechanism (e.g., Hg-biochar binding) and an indirect mechanism (e.g., biochar-impacted sulfur cycling and thus Hg-soil binding), that explain the reduction in Hg bioavailability by biochar amendment based on the interactions among biochar, soil and Hg under redox conditions are highlighted. Furthermore, the existing problems with the use of biochar to treat Hg-contaminated soils and sediments, such as the appropriate dose and the long-term effectiveness of biochar, are discussed. Further research involving laboratory tests and field applications is necessary to obtain a mechanistic understanding of the role of biochar in reducing Hg bioavailability in diverse soil types under varying redox conditions and to develop completely green and sustainable biochar-based functional materials for mitigating Hg-related health risks.


MRS Advances ◽  
2019 ◽  
Vol 4 (17-18) ◽  
pp. 987-992
Author(s):  
François Diaz-Maurin ◽  
Rodney C. Ewing

ABSTRACTThe “safety case” approach has been developed to address the issue of evaluating the performance of a geologic repository in the face of the large uncertainty that results for evaluations that extend over hundreds of thousands of years. This paper reviews the concept of the safety case as it has been defined by the international community. We contrast the safety case approach with that presently used in the U.S. repository program. Especially, we focus on the role of uncertainty quantification. There are inconsistencies between the initial proposal to dealing with uncertainties in a safety case and current U.S. practice. The paper seeks to better define the safety case concept so that it can be usefully applied to the regulatory framework of the U.S. repository program.


2021 ◽  
Author(s):  
Shahar Dery ◽  
Israel Alshanski ◽  
Evgeniy Mervinetsky ◽  
Daniel Feferman ◽  
Shlomo Yitzchaik ◽  
...  

Self-assembly of photo-responsive molecules is a robust technology for reversibly tuning the properties of functional materials. Herein, we probed the crucial role of surface-adsorbate interactions on the adsorption geometry of...


2019 ◽  
Vol 35 (7) ◽  
pp. 720-731 ◽  
Author(s):  
Jonathan Guerrero-Sánchez ◽  
Bo Chen ◽  
Noboru Takeuchi ◽  
Francisco Zaera

Abstract


1938 ◽  
Vol 34 (3) ◽  
pp. 316-320
Author(s):  
T. E. Easterfield

It has been shown by Kulakoff that if G is a group, not cyclic, of order pl, p being an odd prime, the number of subgroups of G of order pk, for 0 < k < l, is congruent to 1 + p (mod p2); and by Hall that if G is any group of finite order whose Sylow subgroups of G of order pk, p being odd, are not cyclic, then, for 0 < k < l, the number of subgroups of G of order pk is congruent to 1 + p (mod p2). No results were given for the case p = 2. In the present paper it is shown that analogous results hold for the case p = 2, but that the role of the cyclic groups is played by groups of four exceptional types: the cyclic groups themselves, and three non-Abelian types. These groups are defined as follows:(1) The dihedral group, of order 2k, generated by A and B, where(2) The quaternion group, of order 2k, generated by A and B, where(3) The "mixed" group, of order 2k, generated by A and B, where


2011 ◽  
Vol 26 (S2) ◽  
pp. 1652-1652
Author(s):  
B. Vyssoki ◽  
G. Sonneck ◽  
N. Praschak-Rieder ◽  
S. Kasper ◽  
M. Willeit ◽  
...  

IntroductionIt is known from previous studies that suicide follows a seasonal pattern with a peak in spring.ObjectivesAnalyze whether suicidal behavior is associated with the increase in the duration of sunshine in spring.AimsTo investigate the effect of number of sunshine hours per month on suicide rates in Austria between 1996–2006.MethodsSuicide data, differentiated by month of suicide, gender, and method of suicide (violent vs. non-violent methods), were provided by Statistics Austria. Data on the average number of sunshine hours per month were provided by the Austrian Central Institute for Meteorology. For statistical analysis ANOVA tests and Pearson correlation tests were used.ResultsSuicide frequencies were highest between March and May, lowest between November and January (df = 11, F = 5.2, p < .0001). The average number of sunshine hours per month was significantly correlated with the number of suicides among both genders r = .43 (p < .0001), violent methods (r = .48; p < .0001) but not with nonviolent methods (r = .03; p = .707).ConclusionsLight, possibly through interaction with melatonin, norepinephrine and serotonin, may improve motivation and drive first while mood improves at a later point in time. Thereby, a rapid increase in sunshine in spring might increase suicidal tendencies in vulnerable subjects.Fig. 1[Suicides and sunshine hours in Austria,1996-2006]


Sign in / Sign up

Export Citation Format

Share Document