scholarly journals Nanoindentation Induced Deformation Near Grain Boundaries of Corrosion Resistant Nickel Alloys

2011 ◽  
Vol 1297 ◽  
Author(s):  
F. William Herbert ◽  
Bilge Yildiz ◽  
Krystyn J. Van Vliet

ABSTRACTThe damage accumulation behavior of different grain boundary structures in Inconel 690 (Ni-29wt%Cr-9wt%Fe) was investigated in the presence of large, localized plastic strains induced by nanoindentation. Spatially-resolved hardness was measured as a function of lateral distance from ‘random’ high-angle grain boundaries and twin boundaries. The confinement of induced defects between the indenter tip and grain boundaries did not lead to significant differences in measured hardness between high angle and twin boundaries. Critical “pop-in” loads indicating the onset of incipient plasticity were lower within 1μm of grain boundaries, but were statistically equivalent for random and twin boundaries. These results suggest a comparable extent of dislocation mobility and absorption at the different grain boundary types in Inconel 690 under ambient conditions.

Author(s):  
J. W. Matthews ◽  
W. M. Stobbs

Many high-angle grain boundaries in cubic crystals are thought to be either coincidence boundaries (1) or coincidence boundaries to which grain boundary dislocations have been added (1,2). Calculations of the arrangement of atoms inside coincidence boundaries suggest that the coincidence lattice will usually not be continuous across a coincidence boundary (3). There will usually be a rigid displacement of the lattice on one side of the boundary relative to that on the other. This displacement gives rise to a stacking fault in the coincidence lattice.Recently, Pond (4) and Smith (5) have measured the lattice displacement at coincidence boundaries in aluminum. We have developed (6) an alternative to the measuring technique used by them, and have used it to find two of the three components of the displacement at {112} lateral twin boundaries in gold. This paper describes our method and presents a brief account of the results we have obtained.


1992 ◽  
Vol 295 ◽  
Author(s):  
Stuart Mckernan ◽  
C. Barry Carter

AbstractGeneral high-angle tilt grain boundaries may be described by an arrangement of repeating structural units. Some grain-boundary defects may also be modeled by the incorporation of structural units of related boundary structures into the boundary. The simulation of these structures requires the use of prohibitively large unit cells. The possibility of modeling these boundaries by the superposition of image simulations of the individual structural units isinvestigated.


Author(s):  
C. W. Price

Little evidence exists on the interaction of individual dislocations with recrystallized grain boundaries, primarily because of the severely overlapping contrast of the high dislocation density usually present during recrystallization. Interesting evidence of such interaction, Fig. 1, was discovered during examination of some old work on the hot deformation of Al-4.64 Cu. The specimen was deformed in a programmable thermomechanical instrument at 527 C and a strain rate of 25 cm/cm/s to a strain of 0.7. Static recrystallization occurred during a post anneal of 23 s also at 527 C. The figure shows evidence of dissociation of a subboundary at an intersection with a recrystallized high-angle grain boundary. At least one set of dislocations appears to be out of contrast in Fig. 1, and a grainboundary precipitate also is visible. Unfortunately, only subgrain sizes were of interest at the time the micrograph was recorded, and no attempt was made to analyze the dislocation structure.


1991 ◽  
Vol 238 ◽  
Author(s):  
Douglas E. Meyers ◽  
Alan J. Ardell

ABSTRACTThe results of our initial efforts at measuring the fracture strengths of grain boundaries In Ni3Al using a miniaturized disk-bend test are presented. The samples tested were 3 mm in diameter and between 150 and 300 μm thick. An Ingot of directlonally-solidlfled, boron-free Ni3Al containing 24% Al was annealed between 1300 and 1350 °C to induce grain growth, producing many grain boundaries In excess of 1.5 mm in length. Specimens were cut from these In such a way that one long grain boundary was located near a diameter of the specimen. The relative orientations of the grains on either side of the boundary were determined from electron channeling patterns. Low-angle boundaries are so strong they do not fracture; Instead the samples deform In a completely ductile manner. High-angle boundaries always fracture, but only after considerable plastic deformation of the two grains flanking them. Fracture is Indicated by a load drop in the load vs. displacement curves. A method involving extrapolation of the elastic portion of these curves to the displacement at fracture is used to estimate the fracture stresses. This procedure yields consistent values of the fracture strengths of high-angle boundaries. The measured stresses are large (∼2 to 3 GPa), but considerably smaller than those required for the fracture of special boundaries, as predicted by computer simulations. No correlation was found between the fracture stresses or loads and the geometry of the high-angle boundaries, many of which are close to, but deviate from, coincident site lattice orientations.


2018 ◽  
Vol 55 (1) ◽  
pp. 21-25 ◽  
Author(s):  
N.V. Skiba

Abstract Stress-driven grain boundary (GB) migration in ultrafine-grained materials with nanotwinned structure is theoretically described. In the framework of the theoretical model, the stress-driven high-angle GB migration is accompanied by migration of twin boundaries which adjoin this GB. Energetic characteristics and critical stresses of the GB migration accompanied by the twin boundary migration are calculated.


1993 ◽  
Vol 319 ◽  
Author(s):  
Jenn-Yue Wang ◽  
A. H. King

AbstractVarious morphologies are observed where twins meet grain boundaries in YBa2Cu3O7−δ. Twins may be “correlated” at the boundary (i.e. twin boundaries from one grain may meet a twin boundary from the other grain in a quadruple junction) and the twins may be narrowed or “constricted” at the boundary. These effects are determined by the interfacial energy. We estimate the energy of the various interfaces by determining the dislocation arrays they contain, using the constrained coincidence site lattice (CCSL) model and Bollmann's O2-lattice formalism. Our approach indicates that there are significant changes in the energy of the interfaces and is thus able to explain the variety of observed morphologies.


1990 ◽  
Vol 5 (5) ◽  
pp. 919-928 ◽  
Author(s):  
S. E. Babcock ◽  
D. C. Larbalestier

Regular networks of localized grain boundary dislocations (GBDs) have been imaged by means of transmission electron microscopy in three different types of high-angle grain boundaries in YBa2Cu3O7-δ, implying that these boundaries possess ordered structures upon which a significant periodic strain field is superimposed. The occurrence of these GBD networks is shown to be consistent with the GBD/Structural Unit and Coincidence Site Lattice (CSL)/Near CSL descriptions for grain boundary structure. Thus, these dislocations appear to be intrinsic features of the boundary structure. The spacing of the observed GBDs ranged from ∼10 nm to ∼100 nm. These GBDs make the grain boundaries heterogeneous on a scale that approaches the coherence length and may contribute to their weak-link character by producing the “superconducting micro-bridge” microstructure which has been suggested on the basis of detailed electromagnetic measurements on similar samples.


1998 ◽  
Vol 13 (3) ◽  
pp. 778-783 ◽  
Author(s):  
Yumi H. Ikuhara ◽  
Shinji Kondoh ◽  
Koichi Kikuta ◽  
Shin-ichi Hirano

Microstructures of ulexite were investigated by CTEM and low electron dose HREM. It was found that the longitudinal grains in ulexite were oriented to c-direction to form a bundle structure. There were a number of small-angle grain boundaries and stacking faults inside a grain in the ulexite. Cleavage microcracks and stacking faults were mostly introduced on the {010} of the ulexite. The high-angle grain boundaries mainly consisted of high coincidence boundaries, which was confirmed by a comparison of observed contact angles and calculated degree of coincidence at the boundaries. The light transmittance properties of the ulexite would depend on the defects such as stacking fault, small-angle grain boundary, and high-angle grain boundary.


2007 ◽  
Vol 550 ◽  
pp. 333-338 ◽  
Author(s):  
Sandra Piazolo ◽  
David J. Prior ◽  
M.D. Holness ◽  
Andreas O. Harstad

Annealing is an important mechanism of microstructural modification both in rocks and metals. In order to relate directly changes in crystallographic orientation to migrating boundaries the researcher has the option to investigate either samples where the grain boundary motion can be directly tracked or a series of samples exhibiting successively higher degrees of annealing. Here we present results from rock samples collected from two well characterised contact aureoles (a volume of rock heated by the intrusion of a melt in its vicinity): One quartz sample in which patterns revealed by Cathodoluminescence (CL) indicate the movement of grain boundaries and a series of calcite samples of known temperature history. Electron backscatter diffraction (EBSD) analysis is used to link the movement of grain, twin boundaries and substructures with the crystallographic orientation / misorientation of a respective boundary. Results from the quartz bearing rock show: (a) propagation of substructures and twin boundaries in swept areas both parallel and at an angle to the growth direction, (b) development of slightly different crystallographic orientations and new twin boundaries at both the growth interfaces and within the swept area, and (c) a gradual change in crystallographic orientation in the direction of growth. Observations are compatible with a growth mechanism where single atoms are attached and detached both at random and at preferential sites i.e. crystallographically controlled sites or kinks in boundary ledges. Strain fields caused by defects and/or trace element incorporation may facilitate nucleation sites for new crystallographic orientations at distinct growth interfaces but also at continuously migrating boundaries. Calcite samples show with increasing duration and temperature of annealing: (a) systematic decrease of the relative frequency of low angle grain boundaries (gbs), (b) decrease in lattice distortion within grains, (c) development of distinct subgrains with little internal lattice distortion, (d) change in lobateness of gbs and frequency of facet parallel gbs and (e) change in position of second phase particles. These observations point to an increasing influence of grain boundary anisotropy with increasing annealing temperature, while at the same time the influence of second phase particles and subtle driving-force variations decrease. This study illustrates the usefulness of using samples from natural laboratories and combining different analysis techniques in microprocess analysis.


2015 ◽  
Vol 21 (4) ◽  
pp. 927-935 ◽  
Author(s):  
Matthew M. Nowell ◽  
Michael A. Scarpulla ◽  
Naba R. Paudel ◽  
Kristopher A. Wieland ◽  
Alvin D. Compaan ◽  
...  

AbstractThe performance of polycrystalline CdTe photovoltaic thin films is expected to depend on the grain boundary density and corresponding grain size of the film microstructure. However, the electrical performance of grain boundaries within these films is not well understood, and can be beneficial, harmful, or neutral in terms of film performance. Electron backscatter diffraction has been used to characterize the grain size, grain boundary structure, and crystallographic texture of sputtered CdTe at varying deposition pressures before and after CdCl2 treatment in order to correlate performance with microstructure. Weak fiber textures were observed in the as-deposited films, with (111) textures present at lower deposition pressures and (110) textures observed at higher deposition pressures. The CdCl2-treated samples exhibited significant grain recrystallization with a high fraction of twin boundaries. Good correlation of solar cell efficiency was observed with twin-corrected grain size while poor correlation was found if the twin boundaries were considered as grain boundaries in the grain size determination. This implies that the twin boundaries are neutral with respect to recombination and carrier transport.


Sign in / Sign up

Export Citation Format

Share Document