Hierarchical computational approaches of the effects of interstitial and vacancy loops on plastic deformation

2011 ◽  
Vol 1298 ◽  
Author(s):  
Tomohito Tsuru ◽  
Yoshiteru Aoyagi ◽  
Yoshiyuki Kaji

ABSTRACTHierarchical modeling based on atomistic and continuum simulations were established to describe the fundamental characteristics of plastic deformation in irradiated materials. Typical irradiation defects of a self-interstitial atom (SIA) loop and vacancy loop are considered. At first atomic models, including a SIA loop and a vacancy as well as a straight dislocation loop in single crystals were constructed. Constant strain is applied to each model and the equilibrium configuration under deformation is calculated by a molecular statics simulation. Maximum shear stresses in various radii of irradiated defects are stored in a database for the continuum mechanics analysis. Then local interaction events between glide dislocation and irradiation defects were introduced through crystal plasticity finite element analysis. In this model the effect of radiation hardening was considered by referring to the experiment. We found that softening after the first yield event is caused by annihilation of irradiation defects resulting from unfaulting of the radiation defects.

1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


2021 ◽  
Vol 9 (8) ◽  
pp. 839
Author(s):  
Tarek N. Salem ◽  
Nadia M. Elkhawas ◽  
Ahmed M. Elnady

The erosion of limestone and calcarenite ridges that existed parallel to the Mediterranean shoreline forms the calcareous sand (CS) formation at the surface layer of Egypt's northern coast. The CS is often combined with broken shells which are considered geotechnically problematic due to their possible crushability and relatively high compressibility. In this research, CS samples collected from a site along the northern coast of Egypt are studied to better understand its behavior under normal and shear stresses. Reconstituted CS specimens with different ratios of broken shells (BS) are also investigated to study the effect of BS ratios on the soil mixture strength behavior. The strength is evaluated using laboratory direct-shear and one-dimensional compression tests (oedometer test). The CS specimens are not exposed to significant crushability even under relatively high-stress levels. In addition, a 3D finite element analysis (FEA) is presented in this paper to study the degradation offshore pile capacity in CS having different percentages of BS. The stress–strain results using oedometer tests are compared with a numerical model, and it gave identical matching for most cases. The effects of pile diameter and embedment depth parameters are then studied for the case study on the northern coast. Three different mixing ratios of CS and BS have been used, CS + 10% BS, CS + 30% BS, and CS + 50% BS, which resulted in a decrease of the ultimate vertical compression pile load capacity by 8.8%, 15%, and 16%, respectively.


Author(s):  
Xian-Kui Zhu ◽  
Rick Wang

Mechanical dents often occur in transmission pipelines, and are recognized as one of major threats to pipeline integrity because of the potential fatigue failure due to cyclic pressures. With matured in-line-inspection (ILI) technology, mechanical dents can be identified from the ILI runs. Based on ILI measured dent profiles, finite element analysis (FEA) is commonly used to simulate stresses and strains in a dent, and to predict fatigue life of the dented pipeline. However, the dent profile defined by ILI data is a purely geometric shape without residual stresses nor plastic deformation history, and is different from its actual dent that contains residual stresses/strains due to dent creation and re-rounding. As a result, the FEA results of an ILI dent may not represent those of the actual dent, and may lead to inaccurate or incorrect results. To investigate the effect of residual stress or plastic deformation history on mechanics responses and fatigue life of an actual dent, three dent models are considered in this paper: (a) a true dent with residual stresses and dent formation history, (b) a purely geometric dent having the true dent profile with all stress/strain history removed from it, and (c) a purely geometric dent having an ILI defined dent profile with all stress/strain history removed from it. Using a three-dimensional FEA model, those three dents are simulated in the elastic-plastic conditions. The FEA results showed that the two geometric dents determine significantly different stresses and strains in comparison to those in the true dent, and overpredict the fatigue life or burst pressure of the true dent. On this basis, suggestions are made on how to use the ILI data to predict the dent fatigue life.


2016 ◽  
Vol 41 (5) ◽  
pp. E149-E158 ◽  
Author(s):  
VF Wandscher ◽  
CD Bergoli ◽  
IF Limberger ◽  
TP Cenci ◽  
P Baldissara ◽  
...  

SUMMARY Objective: This article aims to present a fractographic analysis of an anterior tooth restored with a glass fiber post with parallel fiber arrangement, taking into account force vectors, finite element analysis, and scanning electron microscopy (SEM). Methods: A patient presented at the Faculty of Dentistry (Federal University of Santa Maria, Brazil) with an endodontically treated tooth (ETT), a lateral incisor that had a restorable fracture. The treatment was performed, and the fractured piece was analyzed using stereomicroscopy, SEM, and finite element analysis. Results: The absence of remaining coronal tooth structure might have been the main factor for the clinical failure. We observed different stresses actuating in an ETT restored with a fiber post as well as their relationship with the ultimate fracture. Tensile, compression, and shear stresses presented at different levels inside the restored tooth. Tensile and compressive stresses acted together and were at a maximum in the outer portions and a minimum in the inner portions. In contrast, shear stresses acted concomitantly with tensile and compressive stresses. Shear was higher in the inner portions (center of the post), and lower in the outer portions. This was confirmed by finite element analysis. The SEM analysis showed tensile and compression areas in the fiber post (exposed fibers=tensile areas=lingual surface; nonexposed fibers=compression areas=buccal surface) and shear areas inside the post (scallops and hackle lines). Stereomicroscopic analysis showed brown stains in the crown/root interface, indicating the presence of microleakage (tensile area=lingual surface). Conclusion: We concluded that glass fiber posts with parallel fibers (0°), when restoring anterior teeth, present a greater fracture potential by shear stress because parallel fibers are not mechanically resistant to support oblique occlusal loads. Factors such as the presence of remaining coronal tooth structure and occlusal stability assist in the biomechanical equilibrium of stresses that act upon anterior teeth.


2021 ◽  
Vol 63 (11) ◽  
pp. 1007-1011
Author(s):  
İsmail Saraç

Abstract This study was carried out in two stages. In the first step, a numerical study was performed to verify the previous experimental study. In accordance with the previous experimental study data, single lap joints models were created using the ANSYS finite element analysis program. Then, nonlinear stress and failure analyses were performed by applying the failure loads obtained in the experimental study. The maximum stress theory was used to find finite element failure loads of the single lap joints models. As a result of the finite element analysis, an approximate 80 % agreement was found between experimental and numerical results. In the second step of the study, in order to increase the bond strength, different overlap end geometry models were produced and peel and shear stresses in the adhesive layer were compared according to the reference model. As a result of the analyses, significant strength increases were calculated according to the reference model. The strength increase in model 3 and model 5 was found to be 80 % and 67 %, respectively, relative to the reference model.


2018 ◽  
Vol 767 ◽  
pp. 93-100
Author(s):  
Fritz Klocke ◽  
Anton Shirobokov ◽  
Rafael Hild ◽  
Andreas Feuerhack ◽  
Daniel Trauth ◽  
...  

Deep rolling is an established mechanical surface treatment technology based on local plastic deformation of the surface layer. By these means, residual stresses, and strain hardening are induced into the surface layer as well as its surface structure is smoothed. Vibrorolling is a derivate technology of deep rolling characterized by sinusoidal rolling lanes. Due to process kinematics of vibrorolling the surface layer is incrementally deformed multiple times in different directions. As a result, a more intensive plastic deformation of the surface layer is achieved and potentially tribologically active surface structures are produced. To investigate and compare the effects of both surface treatment technologies on the tribological behavior of a processed component, a friction and wear analysis under lubricated conditions was conducted in this work. Friction and wear behavior of untreated, deep rolled, and vibrorolled specimens using a pin-on-cylinder tribometer was conducted. Hardness, roughness, and geometrical measurements of the wear traces were used to characterize the specimens. Additionally, qualitative assessments of the wear traces using scanning electron microscopy imaging were made. The measurements were performed before, during, and after the friction and wear analysis. Furthermore, contact forces between a tribometer pin and the workpiece were determined to analyze the development of contact shear stresses. Based on the conducted investigations, the effects of deep rolling and vibrorolling on the friction and wear behavior of the treated specimens are discussed and explanations for the observed phenomena are formulated in this work.


Sign in / Sign up

Export Citation Format

Share Document