Profiling of the Mechanical Properties of Ultralow-k Films Using Nanoindentation Techniques

2011 ◽  
Vol 1297 ◽  
Author(s):  
Holm Geisler ◽  
Ulrich Mayer ◽  
Matthias U. Lehr ◽  
Petra Hofmann ◽  
Hans-Juergen Engelmann

ABSTRACTSeveral nanoindentation techniques were applied to the surface, the reverse side and cross-sections of PECVD ultralow-k (ULK) film stacks to characterize their elasto-plastic properties quantitatively. Results showed good agreement of the reduced modulus (Er) values measured from above and on cross-sections, respectively. Er decreased by 10-22% from the upper to the lower surface of the films. This gradient suggests that UV light absorption inside the film leads to slightly reduced curing at the rear side of the films compared to the surface of the ULK layers. Both quasi-static nanoindentation and dynamic mechanical mapping showed this trend. It is demonstrated that quantitative mechanical mapping can be performed with a lateral resolution ≤ 100nm. Slight local variations of Er were detected on ULK/SiCxNy films stacked on top of Cu-low-k interconnect structures.

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2824
Author(s):  
Stana Kovačević ◽  
Snježana Brnada ◽  
Ivana Schwarz ◽  
Ana Kiš

For the purpose of this research, six types of woven fabrics with different proportions of bicomponent carbon fibres (CF), differently distributed in the fabric, were woven and tested. Fibre composition in the core and sheath was determined with X-ray spectroscopy (EDS). Two types of bicomponent CF were selected which are characterised by different proportions of carbon and other polymers in the fibre core and sheath and different cross-sections of the fibres formed during chemical spinning. Physical-mechanical properties were investigated, as well as deformations of fabrics after 10,000, 20,000 and 30,000 cycles under biaxial cyclic stress on a patented device. Tests of the surface and vertical electrostatic resistance from fabric front to back side and from the back side to the fabric front were conducted. According to the obtained results and statistical analyses, it was concluded that the proportion of CF affects the fabric’s physical and mechanical properties, the electrostatic resistance as well as the deformations caused by biaxial cyclic stresses. A higher proportion of CF in the fabric and a higher proportion of carbon on the fibre surface, gave lower electrostatic resistance, i.e., better conductivity, especially when CFs are woven in the warp and weft direction. The higher presence of CF on the front of the fabric, as a consequence of the weave, resulted in a lower surface electrostatic resistance.


Author(s):  
Bhabatosh Biswas ◽  
Biplab Hazra ◽  
Nillohit Mukherjee ◽  
Arijit Sinha

Alkali-treated sisal fibre-incorporated silanized ZrO2 dispersed unsaturated polyester composites were fabricated with a filler loading of 5, 15, 25, 35, 45 wt%, respectively. The mechanical characterization of the composites was suitably executed at the sub-micron scale using the nanoindentation technique. Various mechanical properties were derived from the standard nanoindentation measurements namely, nanohardness, reduced modulus, recovery index, residual depth, wear rate and indentation creep, respectively. A marked improvement in the mechanical properties of the unsaturated polyester matrix due to the incorporation of the fillers (sisal and/or ZrO2) was observed through indentation-derived parameters namely, nanohardness (∼186%), reduced modulus (∼175%), recovery index (∼62%), wear rate (∼63%) and indentation creep (∼33%), respectively. A simulated dynamic mechanical analysis was performed using the sinus mode of the nanoindentation technique. A similar enhancement in the dynamic mechanical properties of the matrix was further observed through dynamic mechanical analysis as storage modulus (∼71%), loss modulus (∼60%), loss factor (∼150%) and specific damping coefficient (∼200%), respectively.


2015 ◽  
Vol 37 (2) ◽  
pp. 162-167
Author(s):  
V.A. Vilensky ◽  
◽  
L.V. Kobrina ◽  
S.V. Riabov ◽  
Y.Y. Kercha ◽  
...  

2019 ◽  
Author(s):  
Amalia Rapakousiou ◽  
Alejandro López-moreno ◽  
Belén Nieto-Ortega ◽  
M. Mar Bernal ◽  
Miguel A. Monclús ◽  
...  

We introduce poly(1,6-pyrene terephthalamide) polymer (PPyrTA) as an aromatic polyamide analogue of poly(p-phenylene terephthalamide) (PPTA), also known as Kevlar®. This work shows that the incorporation of polycyclic aromatic pyrene moieties improves drastically the mechanical properties of the polymeric structure, increasing elastic nanoindentation-determined modulus and hardness by factors of 1.9 and 4.3, respectively. Liquid deprotonated dispersions of PPyrTA nanofibers were used as nanoscale building block for producing large-surface, free-standing polymer macroscopic nanofilms. This 2D assembly leads to further significant improvements in reduced modulus and hardness (more than twice) compared to the starting polymer macroscale fibres, due to a better re-organizational arrangement of the PPyrTA nanofibers in the nanofilms, formed under 2D spatial confinement.


Sign in / Sign up

Export Citation Format

Share Document