scholarly journals Bicomponent Carbon Fibre within Woven Fabric for Protective Clothing

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2824
Author(s):  
Stana Kovačević ◽  
Snježana Brnada ◽  
Ivana Schwarz ◽  
Ana Kiš

For the purpose of this research, six types of woven fabrics with different proportions of bicomponent carbon fibres (CF), differently distributed in the fabric, were woven and tested. Fibre composition in the core and sheath was determined with X-ray spectroscopy (EDS). Two types of bicomponent CF were selected which are characterised by different proportions of carbon and other polymers in the fibre core and sheath and different cross-sections of the fibres formed during chemical spinning. Physical-mechanical properties were investigated, as well as deformations of fabrics after 10,000, 20,000 and 30,000 cycles under biaxial cyclic stress on a patented device. Tests of the surface and vertical electrostatic resistance from fabric front to back side and from the back side to the fabric front were conducted. According to the obtained results and statistical analyses, it was concluded that the proportion of CF affects the fabric’s physical and mechanical properties, the electrostatic resistance as well as the deformations caused by biaxial cyclic stresses. A higher proportion of CF in the fabric and a higher proportion of carbon on the fibre surface, gave lower electrostatic resistance, i.e., better conductivity, especially when CFs are woven in the warp and weft direction. The higher presence of CF on the front of the fabric, as a consequence of the weave, resulted in a lower surface electrostatic resistance.

2021 ◽  
Vol 2021 ◽  
pp. 102-108
Author(s):  
J. Domenech-Pastor ◽  
P. Diaz-Garcia ◽  
D. Garcia

Composites are materials formed by the combination of two or more components that acquire better properties than the ones obtained by each component on its own. Composites have been widely used in the industry due to its light weight and good mechanical properties. To improve these properties several layers of reinforced material (e.g., carbon fibre) are overlapped which produce an increase in the fibre consumption. In this sense Tailored Fibre Placement (TFP) embroidery can offer good opportunity to reduce the consumption of reinforced fibre while improving the mechanical properties due to the alignment of the fibres in the effort direction. This study analyzes the performance of carbon fibre reinforced composites with Polyester resin made with TFP embroidery technology against flexural strength efforts and without using plain woven fabrics to demonstrate that the use of reinforcement fabrics in composites can be optimized by a curved alignment of the fibers. Two different structures were embroidered with TFP technology, one simulating a woven fabric with straight unidirectional alignment of fibres in horizontal and vertical direction, and a second structure made with curvilinear alignment of carbon fibers. After the study of the flexural mechanical properties an improvement of 18% was obtained in maximum flexural strength.


2000 ◽  
Vol 9 (3) ◽  
pp. 096369350000900 ◽  
Author(s):  
J.L. Billoet ◽  
A. Cherouat

The present study concerns the modelling of the behaviour of pre-impregnated woven fabric during the forming process. The mechanical approach is based on a mesostructural model. It allows us to take into account the mechanical properties of fibres and resin and the various dominating mode of deformation of woven fabrics during the forming process. Shear and tensile tests of composite fabric specimens are proposed and compared with the experimental results in order to demonstrate the efficiency of our approach. Different numerical simulations and experiments of shaping process have been carried out in order to validate the proposed computational formulation. The various forming parameters examined have included the initial shape of fabric, fibre orientations and viscosity of resin.


2011 ◽  
Vol 1297 ◽  
Author(s):  
Holm Geisler ◽  
Ulrich Mayer ◽  
Matthias U. Lehr ◽  
Petra Hofmann ◽  
Hans-Juergen Engelmann

ABSTRACTSeveral nanoindentation techniques were applied to the surface, the reverse side and cross-sections of PECVD ultralow-k (ULK) film stacks to characterize their elasto-plastic properties quantitatively. Results showed good agreement of the reduced modulus (Er) values measured from above and on cross-sections, respectively. Er decreased by 10-22% from the upper to the lower surface of the films. This gradient suggests that UV light absorption inside the film leads to slightly reduced curing at the rear side of the films compared to the surface of the ULK layers. Both quasi-static nanoindentation and dynamic mechanical mapping showed this trend. It is demonstrated that quantitative mechanical mapping can be performed with a lateral resolution ≤ 100nm. Slight local variations of Er were detected on ULK/SiCxNy films stacked on top of Cu-low-k interconnect structures.


2011 ◽  
Vol 201-203 ◽  
pp. 203-208
Author(s):  
Liang Chen ◽  
Shu Guang Zhao ◽  
Li Juan Zhang ◽  
Li Qiang Zhang ◽  
Wen Bing Zhang

Woven fabrics are used in a wide variety of products, and they are prized for their flexibility, formability, and high specific strength. However, modeling woven cloth is difficult due, in particular, to complex mechanical properties. In this paper, the shear behavior of plain woven fabric is studied. Through the analysis, a mechanical model is proposed which take the shearing properties into account. It uses physical-based model for animating cloth objects. Furthermore, we demonstrate the efficiency of this method with examples related to accurate cloth simulation from experimental shear curve measured on actual materials.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Abel Cherouat ◽  
Houman Bourouchaki

An important step in the manufacturing processes of thin composite components is the layingup of the reinforcement onto the mould surface. The prediction of the angular distortion of the reinforcement during draping and the changes in fibre orientation are essential for the understanding of the manufacture process and the evaluation of the mechanical properties of the composite structures. This paper presents an optimization-based method for the simulation of the forming processes of woven fabric reinforced composites. Two different approaches are proposed for the simulation of the draping of woven fabric onto complex geometries: geometrical and mechanical approaches. The geometrical approach is based on a fishnet model. It is well adapted to predimensioning fabrics and to give a suitable quantification of the resulting flat patterns. The mechanical approach is based on a mesostructural model. It allows us to take into account the mechanical properties of fibres and resin and the various dominating mode of deformation of woven fabrics during the forming process. Some numerical simulations of the forming process are proposed and compared with the experimental results in order to demonstrate the efficiency of our approaches.


2015 ◽  
Vol 671 ◽  
pp. 179-185 ◽  
Author(s):  
Fan Wu ◽  
Shuai Tong Liang ◽  
Xue Mei Ding

Cotton fabrics are very popular textile products to consumers due to their soft hand and comfortable wearing performance. However, the severe wrinkles on cotton fabrics will frequently happen after washing or wearing. As the growth of the market and demand of consumers, the sales of the steam ironing machine which can remove wrinkles to some extent is getting better. At present, the research is inadequate on the wrinkling mechanism during steam ironing. Therefore, in this paper, we aimed to investigate how cotton woven fabrics’ performance influences on the smoothness appearance after steam ironing. To further analyze wrinkling mechanism, fabrics’ wrinkle recovery rates which comprehensive characterize the physical and mechanical properties were tested with PhabrOmeter, including wrinkle recovery rates at normal temperature and after high temperature treatment. Then, the effect of temperature to fabrics’ wrinkle recovery rates and its relationship with fabrics’ smoothness appearance after ironing were studied. The results indicate that there are no significant correlations between the fabric basic parameters with smoothness appearance after ironing. The effect of temperature during ironing can improve the wrinkle recovery rates about 6%-21%. And no significant correlation is showed between smoothness appearance after ironing and wrinkle recovery rates. Keywords: Steam Ironing; mechanism; fabric parameters; wrinkle recovery rate.


2021 ◽  
Vol 8 (1) ◽  
pp. 52-66
Author(s):  
Dessalegn Awgichew ◽  
Santhanam Sakthivel ◽  
Mekdes Gedlu ◽  
Meseret Bogale

Products produced from textile industries cannot meet the needs for human kind since the population of the world grows exponentially; due to this the recycling of textile materials has gained massive importance in textile and clothing sector. In this study, it was aimed to analyse recycled fibers effect on the yarn and hand loom fabrics as their proportion increases. For this purpose, OE rotor yarns produced by varying the recycled fibers proportion at 25%, 50, and 75% and compared with 100% virgin cotton yarns. The physical and mechanical properties of the yarns such as unevenness, imperfections, hairiness, breaking force, elongation, were measured by Uster Tester 4 SX, Uster Zweigle Hairiness Tester 5, and Uster Tensorapid 3. Then after hand loom fabrics with plain and twill fabrics are produced from produced yarns of different recycled fiber proportions. The effects of recycled fiber proportion on produced hand-woven fabric properties such as pilling, abrasion resistance and air permeability were also evaluated. Results showed that yarns and fabrics produced from recycled fibers blended with virgin cotton are suitable for applications where the strength of yarns and fabric are less critical, but where unevenness, imperfections and handle properties required thus, hand loom fabrics Produced can suitably used for home furnishing applications like table cover, curtains, wall covers and pillow cases.


2020 ◽  
Vol 54 (24) ◽  
pp. 3501-3513
Author(s):  
Mohammad Aghaei ◽  
Mahmood M Shokrieh ◽  
Reza Mosalmani

Mechanical properties of woven fabric composites are influenced by fabric geometry and harness. In the present research, woven fabric composites made of ML-506 epoxy resin and E-glass woven fabrics with three different fabric geometries (harnesses of 2, 5, and 8) were studied experimentally. The new concepts of warp and fill-fiber volume fractions were introduced. Based on these new concepts, a micromechanical model for predicting the stiffness and strength of composites made of woven fabrics was developed. An experimental program was conducted to evaluate the present model and the new concepts of warp and fill-fiber volume fractions. The results obtained by the new micromechanical model have been compared with the conducted experimental results as well as the experimental data available in the literature, and very good correlations were obtained.


2011 ◽  
Vol 331 ◽  
pp. 202-205
Author(s):  
Yu Tao Chang ◽  
Xiao Ming Qian ◽  
Hai Wen Liu ◽  
Hua Wu Liu

3D woven fabric significantly improves the mechanical properties, especially the strength resulting from the between layers connections of yarns Hence, 3D woven fabrics have been widely used as reinforcing material in prefabricated composites, A particular 3D woven fabric with “中” shaped cross section was developed in this study .The fabric was made in a plane loom weaving machine. The designing procedure and processing methods are given in details.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1578
Author(s):  
Yeon Su Bae ◽  
In Chul Um

In this study, natural silk web and natural silk non-woven fabric were prepared mechanically using the binding character of the sericin in silk. The effect of process variables on the preparation, structure, and properties of the silk web and the non-woven fabric was examined. The reeling velocity affected the morphology and mechanical properties of the web but had almost no influence on the crystalline structure of the silk. From the viewpoint of reel-ability and the mechanical properties (work of rupture) of silk web, a reeling velocity of 39.2 m/min represented the optimal processing velocity. The porosity and swelling ratio of the silk web decreased slightly with increasing reeling velocity. Furthermore, the reeling bath temperature had a significant effect on the reel-ability of silk filaments from a silkworm cocoon. Bath temperatures ≥50 °C yielded good reel-ability (>900 m reeling length). The porosity, swelling ratio in water, and mechanical properties of the silk web and silk non-woven fabric changed only slightly with the reeling bath temperature but changed significantly with the hot press treatment. The hot-pressed silk web (i.e., silk non-woven fabric) exhibited higher tensile strength as well as lower elongation at break, porosity, and swelling ratio than the silk web.


Sign in / Sign up

Export Citation Format

Share Document