Evaluation of Bioactive Glass (13-93) Scaffolds with an Oriented Microstructure for Regenerating Load-bearing Bones

2012 ◽  
Vol 1465 ◽  
Author(s):  
Xin Liu ◽  
Mohammed N. Rahaman

ABSTRACTBioactive glass is an attractive scaffold material for use in filling bone defects because of its widely recognized ability to support the growth of bone cells and to bond firmly with hard and soft tissue. Use of bioactive glasses in the form of porous three-dimensional scaffolds for bone repair applications has been receiving considerable interest in recent years. However, bioactive glass scaffolds have been limited to the repair of low-load bone defects because of their low strength. In the present work, porous and strong bioactive glass scaffolds with an oriented microstructure were prepared by unidirectional freezing of camphene-based suspensions, and evaluated for their ability to regenerate bone in a non-healing rat calvarial defect model. Scaffolds of 13-93 glass (53SiO2, 6Na2O, 12K2O, 5MgO, 20CaO, 4P2O5; wt%) with a porosity of 50% and columnar pores of diameter 50–150 μm showed a compressive strength of 47 ± 5 MPa and an elastic modulus of 11 ± 3 GPa. Total bone regeneration in the oriented scaffolds, 18% after implantation for 12 weeks to 24% after 24 weeks, was not significantly different from that in 13-93 scaffolds with a microstructure similar to that of dry human trabecular bone (control group). The results indicated that these oriented bioactive glass (13-93) scaffolds could potentially be used in the regeneration of loaded bone.

2017 ◽  
Vol 68 (2) ◽  
pp. 387-389
Author(s):  
Cristian Trambitas ◽  
Tudor Sorin Pop ◽  
Alina Dia Trambitas Miron ◽  
Dorin Constantin Dorobantu ◽  
Klara Brinzaniuc

A challenging problem in orthopedic practice is represented by bone defects may they occur from trauma, malignancy, infection or congenital disease. Bioactive Glasses have a widely recognized ability to foster the growth of bone cells, and to bond strongly with both hard and soft tissues. Upon implantation, Bioactive Glasses undergoes specific reactions, leading to the formation of an amorphous calcium phosphate or crystalline hydroxyapatite phase on the surface of the glass, which is responsible for its strong bonding with the surrounding tissue. This phenomenon sustains a more rapid healing of bone defects and presents great antibacterial properties. In this paper we report on a clinical study that uses S53P4 Bioactive Glass to successfully treat bone defects and testify of the good compatibility of this material with human tissues.


2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Mohamed N. Rahaman ◽  
Wei Xiao ◽  
Wenhai Huang

AbstractBioactive glass particles andweak scaffolds have been used to heal small contained bone defects but an unmet challenge is the development of bioactive glass implants with the requisite mechanical reliability and in vivo performance to heal structural bone defects. Inadequate mechanical strength and a brittle mechanical response have been key concerns in the use of bioactive glass scaffolds in structural bone repair. Recent research has shown the capacity to create strong porous bioactive glass scaffolds and the ability of these scaffolds to heal segmental bone defects in small and large rodents at a rate comparable to autogenous bone grafts. Loading these strong porous scaffolds with bone morphogenetic protein-2 can significantly enhance their ability to regenerate bone. Recentwork has also shown that coating the external surface of strong porous scaffolds with an adherent biodegradable polymer can dramatically improve their load-bearing capacity in flexural loading and their work of fracture (a measure of toughness). These tough and strong bioactive glass-polymer composites with an internal architecture conducive to bone infiltration could provide optimal synthetic implants for structural bone repair.


2019 ◽  
Vol 70 (6) ◽  
pp. 1983-1987
Author(s):  
Cristian Trambitas ◽  
Anca Maria Pop ◽  
Alina Dia Trambitas Miron ◽  
Dorin Constantin Dorobantu ◽  
Flaviu Tabaran ◽  
...  

Large bone defects are a medical concern as these are often unable to heal spontaneously, based on the host bone repair mechanisms. In their treatment, bone tissue engineering techniques represent a promising approach by providing a guide for osseous regeneration. As bioactive glasses proved to have osteoconductive and osteoinductive properties, the aim of our study was to evaluate by histologic examination, the differences in the healing of critical-sized calvarial bone defects filled with bioactive glass combined with adipose-derived mesenchymal stem cells, compared to negative controls. We used 16 male Wistar rats subjected to a specific protocol based on which 2 calvarial bone defects were created in each animal, one was filled with Bon Alive S53P4 bioactive glass and adipose-derived stem cells and the other one was considered control. At intervals of one week during the following month, the animals were euthanized and the specimens from bone defects were histologically examined and compared. The results showed that this biomaterial was biocompatible and the first signs of osseous healing appeared in the third week. Bone Alive S53P4 bioactive glass could be an excellent bone substitute, reducing the need of bone grafts.


2006 ◽  
Vol 21 (5) ◽  
pp. 341-347 ◽  
Author(s):  
José Carlos Garcia de Mendonça ◽  
Rafael De Rossi ◽  
Celso Massaschi Inouye ◽  
Diego Rodrigo Paulillo Bazan ◽  
João Carlos Castro Monteiro ◽  
...  

PURPOSE: Morphological study comparing castor oil polyurethane and autogenous bone graft to repair bone defect in zygomatic bone of rabbits. METHODS: Twenty-four adult, male New Zealand rabbits were randomly distributed between two groups of twelve. Bone defects of 5mm in diameter were cut through the zygomatic bone and filled with polyurethane discs in the experimental group or autogenous bone harvested from the tibia in the control group. Animals were sacrificed after 30, 60 or 90 days, and the zygomatic bones were macro- and microscopically analyzed. Student's, Fisher's, chi-squared and McNemar's tests were used for statistical analysis. RESULTS: Both the castor oil polyurethane and the autograft adapted well to the defect, with no need for fixation. Fibrous connective tissue encapsulated the polyurethane, but no inflammation or giant cell reaction was observed. Acidophilic and basophilic areas were observed inside the micropores of the polyurethane, suggesting cell nuclei. After 90 days, bone repair with a lamellar pattern of organization was observed in the control group. CONCLUSION: The castor oil polyurethane was biocompatible and did not cause inflammation. It may be considered an alternative to fill bone defects.


2020 ◽  
Author(s):  
Xue-Cheng Sun ◽  
Hu Wang ◽  
Jian-Hui Li ◽  
Dan Zhang ◽  
Xu Ma ◽  
...  

Abstract Background: Alveolar cleft is a kind of cleft lip and palate, which seriously affects the physical and mental health of patients. In this study, a similar model of human alveolar cleft phenotype was established in rabbits to evaluate the effect of bone collagen particles combined with human umbilical cord mesenchymal stem cells (hUC-MSCs) on the repair of alveolar cleft bone defects. Methods: In this study, 24 adult Japanese white rabbits (JWRs) were selected and randomly divided into 4 groups. Including normal group, control group, materials group and MSCs group. The model of alveolar clefts was established by removing the incisors on the left side of the upper jaw. The normal group did nothing. In the control group, the incisors were removed and sutured directly. In the material group, the incisor were removed, then filled with bone collagen particles, and finally sutured. In the MSCs group, the incisors were first removed, then filled with bone collagen particles incubated by hUC-MSCs, and then stitched. Blood biochemical analysis was performed 3 months after the operation. Skull tissues were collected for gross observation, and micro-focus computerized tomography (micro-CT) analysis. Paraffin sections were prepared for histological and immunohistochemical staining. Results: The bone collagen particles and hUC-MSCs are not biotoxic and can promote alvenlus regeneration. Bone collagen particles combined with hUC-MSCs were much better than those used alone in inducing bone repair and regeneration. Conclusions: HUC-MSCs can be used as a bone generation inducer combined with bone collagen materials for bone regeneration and repair.


2020 ◽  
Vol 54 (4) ◽  
pp. 336-342
Author(s):  
Philipp Körner ◽  
Jana A Schleich ◽  
Daniel B. Wiedemeier ◽  
Thomas Attin ◽  
Florian J. Wegehaupt

<b><i>Objectives:</i></b> This in vitro study aimed to evaluate and compare the effect of two different bioactive glasses, a hydroxyapatite-containing, fluoride-free toothpaste (HTP) and a fluoride toothpaste (FTP) on the remineralization behavior of initial caries lesions. <b><i>Materials and Methods:</i></b> A total of 100 bovine enamel samples were randomly allocated to five groups of 20 samples each: NC = negative control group (artificial saliva); HTP = HTP group (Karex); FTP = FTP group (Elmex caries protection, 1,400 ppm); FTP + BG<sub>nano</sub> = FTP followed by Actimins bioactive glass; FTP + BG<sub>amorph</sub> = FTP followed by Schott bioactive glass. Radiographic documentation (advanced transversal microradiography; aTMR) was applied before and after all samples were exposed to a demineralizing gel for 10 days. Over a period of 28 days, samples were covered twice a day (every 12 h) with a toothpaste slurry of the respective test group or with artificial saliva in NC for 60 s and brushed with 15 brushing strokes. Samples in FTP + BG<sub>nano</sub> and FTP + BG<sub>amorph</sub> were additionally treated with the respective bioactive glass slurry for 30 s after brushing with the FTP. In the meantime, all samples were stored in artificial saliva. After 28 days, the structure of all samples was assessed again using aTMR and compared to the values measured after demineralization. The statistical evaluation of the integrated mineral loss was performed using Kruskal-Wallis test followed by a post hoc Conover test. <b><i>Results:</i></b> The FTP revealed the significantly highest increase of mineral content while the HTP showed the significantly lowest remineralization. Compared to artificial saliva, the use of the HTP or the combined application of FTP followed by bioactive glasses (FTP + BG<sub>nano</sub> and FTP + BG<sub>amorph</sub>) showed no significant remineralization. <b><i>Conclusion:</i></b> Under remineralizing in vitro conditions, brushing with 1,400 ppm FTP induced significantly more remineralization compared to storage in artificial saliva. The additional administration of both bioactive glasses as well as the substitutional brushing with an HTP resulted in significantly less remineralization compared to brushing with 1,400 ppm FTP.


2021 ◽  
pp. 31-35
Author(s):  
Felipe Rychuv Santos ◽  
Carmen L. Mueller Storrer ◽  
Suyany Gabriely Weiss ◽  
Leandro Kluppel ◽  
João César Zielak ◽  
...  

The aim is to evaluate the local effect of different concentrations of growth hormone (GH) on the repair of craniofacial bone defects, through histological, histomorfometric, and insulin-like growth factor I (IGF-I) immunoexpression assessments. Critical defects (5 mm) were performed in 32 Wistar rats. The animals were divided into four groups: Group C (Control); Group S (Sponge-collagen); Group GH 0.08 mL; GH 0.104 mg; Group GH 0.1mL. Local applications were performed 3 times a week until the rats were euthanized at 60 days. The data were submitted to ANOVA and Tukey's test (P < 0.05). A healing process with predominance of collagen bers and bone neoformation near the edges of the defect was observed in groups C and S. Islands of bone neoformation were observed at the center and edges of the defect in groups GH 0.08 and GH 0.1. In GH 0.1, the bone was more compact, and the defect was completely closed in some specimens. Bone neoformation was signicantly higher in the GH-treated groups. All the specimens stained positive for IGF-I, and this immunoexpression was signicantly higher in Group GH 0.1. In conclusion, locally applied GH signicantly favored bone repair in rat calvaria, and a higher dose of GH increased the immunoexpression of IGF-I.


2020 ◽  
Vol 10 (8) ◽  
pp. 1236-1241
Author(s):  
Wei Wang ◽  
Pengtao Zhang ◽  
Yuqi Zhou ◽  
Yuzhu Jia ◽  
Lei Zhang

Polyetheretherketone (PEEK) has the advantages of good biocompatibility, thus become a widely used bone remodeling material. Bioceramics are also highly effective bone repair materials. However, the repairing effect of biphasic bioceramics combined with polyetheretherketone composites on alveolar bone defects has not been elucidated. SD rats were separated into control group that was established as alveolar bone injury model; PEEK group that the alveolar bone injury model was repaired with polyether ether ketone; and composite group that alveolar bone injury model was repaired with double-tube biphase bioceramic/polyetheretherketone. After 8 weeks of treatment, the bone mineral density (BMD) changes were assessed by X-ray absorptiometry. HE staining was used to analyze the changes of tooth defect. The change of alkaline phosphatase (ALP) content was analyzed. Real-time PCR was performed to measure osteogenic factors Opn and Runx2 expressions. Serum BMP-2 level was analyzed by ELISA. The alveolar ridge height was compared and the alveolar bone repair rate was calculated. In the PEEK group and the composite group, BMD was significantly increased, bone was repaired, Runx2 and Opn mRNA expression was upregulated and ALP activity was enhanced along with elevated BMP-2 secretion, alveolar ridge height and bone repair rate compared to control group (P < 0 05). The composite group exhibited more significant changes compared with PEEK group (P < 0 05). Double-tube biphasic bioceramic/polyetheretherketone composites can repair alveolar bone defects, promote osteogenic differentiation, induce BMP-2 secretion, enhance bone density, and accelerate alveolar bone repair.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2908 ◽  
Author(s):  
Julian Bejarano ◽  
Aldo R. Boccaccini ◽  
Cristian Covarrubias ◽  
Humberto Palza

Biodegradable polymer scaffolds filled with bioactive glass particles doped with therapeutic metal ions are a novel and promising strategy to repair critical-sized bone defects. In this study, scaffolds based on a poly (D, L-lactide acid) (PDLLA) matrix filled with un-doped and Cu-, Zn- and CuZn-doped bioactive glass particles were produced by freeze-drying and a salt-leaching method. The effects of the doping and content of the glass particles (10 and 30 wt.%) on the morphology, compression properties, apatite formation, and degradation behavior of the scaffolds were evaluated. The scaffolds presented high porosity (~93%) with pores ranged from 100 to 400 μm interconnected by smaller pores and this porosity was kept after the glass particles incorporation. The glass particles reinforced the polymer scaffolds with improvements as high as 130% in elastic moduli, and further promoted the apatite formation on the scaffold surface, both properties depending on the amount and type of filler. The bioactive glass particles boosted the scaffold degradation with the PDLLA/un-doped glass scaffold showing the highest rate, but still retaining structural and dimensional integrity. Our findings show that the incorporation of un-doped and metal-doped bioactive glasses increases the mechanical strength, promotes the bioactivity and modifies the degradation profile of the resulting polymer/glass scaffolds, making them better candidates for bone repair.


2016 ◽  
Vol 2 (1) ◽  
Author(s):  
A. N. S. Rastelli ◽  
G. Nicolodelli ◽  
R. A. Romano ◽  
D. M. B. P. Milori ◽  
I. L. O. Perazzoli ◽  
...  

AbstractTooth bleaching agents may weaken the tooth structure, therefore, it is important to minimize any risks of enamel and dentine damage caused by them. In this way, different materials have been used to avoid or minimize the tooth damage during bleaching. Recently, bioactive glasses have been demonstrated to be effective in mineralization of dental structures. Therefore, this study evaluated the effect of BioSilicate® (a polycrystalline bioactive glass-ceramic) after bleaching by Laser-induced breakdown spectroscopy (LIBS) technique. Bovine dental blocks with 4 × 4 × 3 mm were obtained (n = 20), sequentially embedded in epoxy resin and then polished. Bleaching was performed using 35% hydrogen peroxide (Whiteness HP). Calcium (Ca) and phosphate (P) intensity values by LIBSwere obtained before the treatment (T0, baseline – control Group), after bleaching (T1), and after BioSilicate® application (T2). The use of BioSilicate® after bleaching showed to be an optimal way to remineralize enamel surface making BioSilicate® application a promising adjunct step to avoid or minimize the mineral loss on enamel surface after bleaching.


Sign in / Sign up

Export Citation Format

Share Document