Single-Mode Superconductivity in LaAlO3/SrTiO3 Nanostructures

2013 ◽  
Vol 1507 ◽  
Author(s):  
Joshua P. Veazey ◽  
Guanglei Cheng ◽  
Patrick Irvin ◽  
Shicheng Lu ◽  
Mengchen Huang ◽  
...  

ABSTRACTThe properties of superconductors at the extreme limits of dimensionality are of fundamental interest. The interface of LaAlO3 and SrTiO3 hosts a quasi-two-dimensional superconductor below Tc≈200 mK. Here we report superconductivity in nanowire-shaped structures created at the LaAlO3/SrTiO3 interface using conductive atomic force microscope lithography. Nanowire cross-sections are small compared to the superconducting coherence length in LaAlO3/SrTiO3 (w <<ξSC∼100 nm), placing them in the quasi-1D regime. The ability to “write” fully superconducting nanostructures on an insulating LaAlO3/SrTiO3 “canvas” opens possibilities for the development of new families of superconducting nanoelectronics. Four-terminal transport measurements suggest that in some devices both the normal and superconducting states are confined to a single quantum channel.

2002 ◽  
Vol 719 ◽  
Author(s):  
Myoung-Woon Moon ◽  
Kyang-Ryel Lee ◽  
Jin-Won Chung ◽  
Kyu Hwan Oh

AbstractThe role of imperfections on the initiation and propagation of interface delaminations in compressed thin films has been analyzed using experiments with diamond-like carbon (DLC) films deposited onto glass substrates. The surface topologies and interface separations have been characterized by using the Atomic Force Microscope (AFM) and the Focused Ion Beam (FIB) imaging system. The lengths and amplitudes of numerous imperfections have been measured by AFM and the interface separations characterized on cross sections made with the FIB. Chemical analysis of several sites, performed using Auger Electron Spectroscopy (AES), has revealed the origin of the imperfections. The incidence of buckles has been correlated with the imperfection length.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jungseek Hwang

AbstractElectron–boson spectral density functions (EBSDFs) can be obtained from measured spectra using various spectroscopic techniques, including optical spectroscopy. EBSDFs, known as glue functions, are suggested to have a magnetic origin. Here, we investigated EBSDFs obtained from the measured optical spectra of hole-doped cuprates with wide doping levels, from underdoped to overdoped cuprates. The average frequency of an EBSDF provides the timescale for the spin fluctuations to form Cooper pairs. This timescale is directly associated with retarded interactions between electrons. Using this timescale and Fermi velocity, a reasonable superconducting coherence length, which reflects the size of the Cooper pair, can be extracted. The obtained coherence lengths were consistent with those measured via other experimental techniques. Therefore, the formation of Cooper pairs in cuprates can be explained by spin fluctuations, the timescales of which appear in EBSDFs. Consequently, EBSDFs provide crucial information on the timescale of the microscopic mechanism of Cooper pair formation.


1999 ◽  
Vol 60 (1) ◽  
pp. 114-117 ◽  
Author(s):  
K. Tomimoto ◽  
I. Terasaki ◽  
A. I. Rykov ◽  
T. Mimura ◽  
S. Tajima

2001 ◽  
Vol 94-95 ◽  
pp. 797-803 ◽  
Author(s):  
I. Robert ◽  
E. Moreau ◽  
J.M. Gérard ◽  
I. Abram

Sign in / Sign up

Export Citation Format

Share Document