scholarly journals The Debye Temperature for Hydrothermally Grown ThO2 Single Crystals

2013 ◽  
Vol 1576 ◽  
Author(s):  
Tony D. Kelly ◽  
James C. Petrosky ◽  
John W. McClory ◽  
Timothy Zens ◽  
David Turner ◽  
...  

ABSTRACTThe electronic properties of ThO2 single crystals were studied using x-ray photoemission spectroscopy (XPS). The XPS results show that the Th 4f core level is in an oxidation state that is consistent with that expected for Th in ThO2. The effective Debye temperature is estimated from the temperature dependent photoemission intensities of the Th 4f core level over the temperature range of 290 to 360 K. A Debye temperature of 468±32 K has been determined.

2D Materials ◽  
2021 ◽  
Author(s):  
Archit Dhingra ◽  
Alexey Lipatov ◽  
Haidong Lu ◽  
Katerina Chagoya ◽  
Joseph Dalton ◽  
...  

Abstract GeI2 is an interesting two-dimensional (2D) wide-band gap semiconductor because of diminished edge scattering due to an absence of dangling bonds. Angle-resolved x-ray photoemission spectroscopy (ARXPS) indicates a germanium rich surface, and a surface to bulk core-level shift of 1.8 eV in binding energy, between the surface and bulk components of the Ge 2p3/2 core-level, making clear that the surface is different from the bulk. Temperature dependent studies indicate an effective Debye temperature (θD ) of 186 ± 18 K for the germanium x-ray photoemission spectroscopy (XPS) feature associated with the surface. These measurements also suggest an unusually high effective Debye temperature for iodine (587 ± 31 K), implying that iodine is present in the bulk of the material, and not the surface. From optical absorbance, GeI2 is seen to have an indirect (direct) optical band gap of 2.60 (2.8) ± 0.02 (0.1) eV, consistent with the expectations. Temperature dependent magnetometry indicates that GeI2 is moment paramagnetic at low temperatures (close to 4 K) and shows a diminishing saturation moment at high temperatures (close to 300 K and above).


Author(s):  
H. B. Gasimov ◽  
R. M. Rzayev

Cu2Te single crystal was grown by the Bridgman method. X-ray diffraction (XRD) study of Cu2Te single crystals in the temperature range of 293–893 K was performed and possible phase transitions in the mentioned range of temperature have been investigated. (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals also were grown with [Formula: see text], 0.05, 0.10 concentrations and structural properties of the obtained single crystals were investigated by the XRD method in the temperature range 293–893 K. Lattice parameters and possible phase transitions in the mention temperature range were determined for (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals for [Formula: see text], 0.05, 0.10 concentrations.


2020 ◽  
Vol 235 (4-5) ◽  
pp. 117-125
Author(s):  
Myroslava Horiacha ◽  
Maximilian K. Reimann ◽  
Jutta Kösters ◽  
Vasyl‘ I. Zaremba ◽  
Rainer Pöttgen

AbstractThe quaternary gallium-rich intermetallic phases RE2Pt3Ga4In with RE = Y and Gd-Tm were synthesized by arc-melting of the elements and subsequent annealing. Small single crystals were obtained by high-frequency annealing of the samples in sealed tantalum ampoules. The polycrystalline samples were characterized through their X-ray powder patterns. The RE2Pt3Ga4In phases crystallize with a site ordering variant of the orthorhombic Y2Rh3Sn5 type, space group Cmc 21. The structures of Gd2Pt3Ga4In, Dy2Pt3Ga4.14In0.86, Er2Pt3Ga4.17In0.83 and Tm2Pt3Ga4.21In0.79 were refined from single-crystal X-ray diffraction data. The single crystals reveal small homogeneity ranges RE2Pt3Ga4±xIn1±x. The striking geometrical structural building units are slightly distorted trigonal prisms around the three crystallographically independent platinum atoms: Pt1@RE4Ga2, Pt2@RE2Ga4 and Pt3@RE2Ga2In2. Based on these prismatic building units, the RE2Pt3Ga4In structures can be described as intergrowth variants of TiNiSi and NdRh2Sn4 related structural slabs. Temperature dependent magnetic susceptibility studies of Gd2Pt3Ga4In and Tb2Pt3Ga4In show Curie-Weiss behavior and the experimental magnetic moments confirm stable trivalent gadolinium respectively terbium. Gd2Pt3Ga4In and Tb2Pt3Ga4In order antiferromagnetically at TN = 15.8(1) and 26.0(1) K. Magnetization curves at 3 K show field-induced spin reorientations.


1994 ◽  
Vol 375 ◽  
Author(s):  
Xiaohong Hu ◽  
Kunlun Jia ◽  
Fuping Liu ◽  
Ian Baker ◽  
David Black

AbstractDislocation velocities have been measured in both lightly and heavily HCl-doped ice single crystals using synchrotron-based, monochromatic X-ray topography. In the temperature range −10°C to −30°C, a concentration of ˜1 × 10−6M was found not to affect the mobility of either 60° or screw basal dislocations, confirming the earlier observations of C. Shearwood and R. W. Whitworth [Philosophical Magazine A65, 1992, 85]. However, heavier doping (˜1.9 × 10−4M) increased the basal dislocation velocity, compared to pure ice, by a factor of 2.6 at −16.4°C.


2002 ◽  
Vol 734 ◽  
Author(s):  
X. D. Feng ◽  
D. Grozea ◽  
Z. H. Lu

ABSTRACTWe studied the poly [2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV)/LiF/Al interface by angle-dependent X-ray photoemission spectroscopy (XPS). The changes in the C1s, O 1s, Al 2p core level spectra, and the evolution of O to C and Li to F atomic ratios at different photoelectron take-off angles were carefully analyzed. A reduced oxygen concentration with a LiF layer at the interface suggests that LiF can help reduce the oxidation of Al. The interface was found rich in Li+ ions, some of which might be attached to MEH-PPV to form “N type” doping. The electron injection layer consists of Li+doped MEH-PPV, LiF, Al oxides, and metallic Al.


Sign in / Sign up

Export Citation Format

Share Document