High Growth Rate Process in a SiC Horizontal Reactor with HCl Addition: Structural and Electrical Characterization

2006 ◽  
Vol 911 ◽  
Author(s):  
Francesco La Via ◽  
Giuseppa Galvagno ◽  
Andrea Firrincieli ◽  
Salvatore Di Franco ◽  
Andrea Severino ◽  
...  

AbstractThe growth rate of 4H-SiC epitaxial layer has been increased by a factor 19 (up to 112 μm/h) with respect to the standard process with the introduction of HCl in the deposition chamber. The epitaxial layers grown with the addition of HCl have been characterized by electrical, optical and structural characterization methods. The effects of different deposition parameters on the epitaxial growth process have been described in detail. This process can be very promising for high power devices with a breakdown voltage of 10 kV.

2007 ◽  
Vol 556-557 ◽  
pp. 157-160 ◽  
Author(s):  
Francesco La Via ◽  
Stefano Leone ◽  
Marco Mauceri ◽  
Giuseppe Pistone ◽  
Giuseppe Condorelli ◽  
...  

The growth rate of 4H-SiC epi layers has been increased by a factor 19 (up to 112 μm/h) with respect to the standard process with the introduction of HCl in the deposition chamber. The epitaxial layers grown with the addition of HCl have been characterized by electrical, optical and structural characterization methods. An optimized process without the addition of HCl is reported for comparison. The Schottky diodes, manufactured on the epitaxial layer grown with the addition of HCl at 1600 °C, have electrical characteristics comparable with the standard epitaxial process with the advantage of an epitaxial growth rate three times higher.


2008 ◽  
Vol 600-603 ◽  
pp. 123-126 ◽  
Author(s):  
Francesco La Via ◽  
Gaetano Izzo ◽  
Marco Mauceri ◽  
Giuseppe Pistone ◽  
Giuseppe Condorelli ◽  
...  

The growth rate of 4H-SiC epi layers has been increased up to 100 µm/h with the use of trichlorosilane instead of silane as silicon precursor. The epitaxial layers grown with this process have been characterized by electrical, optical and structural characterization methods. Schottky diodes, manufactured on the epitaxial layer grown with trichlorosilane at 1600 °C, have higher yield and lower defect density in comparison to diodes realized on epilayers grown with the standard epitaxial process.


2020 ◽  
Vol 55 (13) ◽  
pp. 5378-5389
Author(s):  
Liyong Du ◽  
Keyan Wang ◽  
Yinpeng Zhong ◽  
Bing Liu ◽  
Xinfang Liu ◽  
...  

2006 ◽  
Vol 83 (1) ◽  
pp. 48-50 ◽  
Author(s):  
F. La Via ◽  
G. Galvagno ◽  
F. Roccaforte ◽  
F. Giannazzo ◽  
S. Di Franco ◽  
...  

2013 ◽  
Vol 740-742 ◽  
pp. 323-326
Author(s):  
Kassem Alassaad ◽  
François Cauwet ◽  
Davy Carole ◽  
Véronique Soulière ◽  
Gabriel Ferro

Abstract. In this paper, conditions for obtaining high growth rate during epitaxial growth of SiC by vapor-liquid-solid mechanism are investigated. The alloys studied were Ge-Si, Al-Si and Al-Ge-Si with various compositions. Temperature was varied between 1100 and 1300°C and the carbon precursor was either propane or methane. The variation of layers thickness was studied at low and high precursor partial pressure. It was found that growth rates obtained with both methane and propane are rather similar at low precursor partial pressures. However, when using Ge based melts, the use of high propane flux leads to the formation of a SiC crust on top of the liquid, which limits the growth by VLS. But when methane is used, even at extremely high flux (up to 100 sccm), no crust could be detected on top of the liquid while the deposit thickness was still rather small (between 1.12 μm and 1.30 μm). When using Al-Si alloys, no crust was also observed under 100 sccm methane but the thickness was as high as 11.5 µm after 30 min growth. It is proposed that the upper limitation of VLS growth rate depends mainly on C solubility of the liquid phase.


2008 ◽  
Vol 600-603 ◽  
pp. 115-118 ◽  
Author(s):  
Henrik Pedersen ◽  
Stefano Leone ◽  
Anne Henry ◽  
Franziska Christine Beyer ◽  
Vanya Darakchieva ◽  
...  

The chlorinated precursor methyltrichlorosilane (MTS), CH3SiCl3, has been used to grow epitaxial layers of 4H-SiC in a hot wall CVD reactor, with growth rates as high as 170 µm/h at 1600°C. Since MTS contains both silicon and carbon, with the C/Si ratio 1, MTS was used both as single precursor and mixed with silane or ethylene to study the effect of the C/Si and Cl/Si ratios on growth rate and doping of the epitaxial layers. When using only MTS as precursor, the growth rate showed a linear dependence on the MTS molar fraction in the reactor up to about 100 µm/h. The growth rate dropped for C/Si < 1 but was constant for C/Si > 1. Further, the growth rate decreased with lower Cl/Si ratio.


Sign in / Sign up

Export Citation Format

Share Document