Comparison of the Fracture Behavior of Brittle ILD Films used in the BEOL in Dry and Wet Environment using Nanoindentation

2006 ◽  
Vol 914 ◽  
Author(s):  
Eva Simonyi ◽  
Michael Lane ◽  
Erik Liniger ◽  
Alfred Grill

AbstractDuring the manufacturing process of the BEOL the low-k brittle ILD dielectrics are exposed to wet environments. These environments could and do affect the films fracture toughness, the so called critical film thickness, above which spontaneous cracking occurs. Nanoindentation combined with AFM imaging methods allow to study these phenomena.

2005 ◽  
Vol 863 ◽  
Author(s):  
Eva E. Simonyi ◽  
E. Liniger ◽  
M. Lane ◽  
Q. Lin ◽  
C. D. Dimitrakopoulos ◽  
...  

AbstractIt is of importance to understand cracking behavior in low dielectric constant, low modulus materials. Nanoindentation method is presented as a tool to estimate the critical film thickness, thickness above which spontaneous cracking could occur, for ILD films used in the BEOL. The critical film thickness was then used to calculate cohesive energies and fracture toughness of the films. Materials were investigated using nanoindentation combined with AFM imaging. The results were compared to data acquired by four point bend methods.


2007 ◽  
Vol 1052 ◽  
Author(s):  
Shigeki Nakao ◽  
Taeko Ando ◽  
Shigeo Arai ◽  
Noriyuki Saito ◽  
Kazuo Sato

AbstractThis paper reports a transition in the fracture behavior of micron-sized single-crystal-silicon (SCS) film in an MEMS structure for various film thicknesses and ambient temperatures. The mean fracture toughness of 4-µm-thick SCS films was 1.28 MPa at room temperature (RT), and the value increased as the film thickness decreased, reaching 2.91 MPa for submicron-thick films. The fracture toughness of 4-µm-thick film did not change for ambient temperatures ranging from RT to 60ºC. However, it drastically increased at 70ºC and reached 2.60 MPa at 150ºC. Enhanced dislocation activity in the SCS crystal near the fracture surface was observed on 1-µm-thick film at RT and 4-µm-thick film at 80ºC by high-voltage electron microscopy. This change in dislocation activity seemed to correlated with the transition in fracture behavior.


2003 ◽  
Vol 766 ◽  
Author(s):  
Dylan J. Morris ◽  
Robert F. Cook

AbstractThe physics and mechanics of a fracture toughness measurement technique for low-k films are described. It has been observed experimentally that it is possible to generate reproducible stable cracks at indentation sites in thin low-k films using cube-corner indentation. The fracture response depends on the film thickness and follows no simple scaling laws. The physics of a model that takes into account the stress fields from indentation and film stress, with particular attention paid to the Poisson's ratio of the film, are described. The model is able to predict the changes in observables when the film thickness is changed, which allows one to estimate film toughness independent of the configuration of the material.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2509
Author(s):  
Seyed Mohammad Javad Razavi ◽  
Rasoul Esmaeely Neisiany ◽  
Moe Razavi ◽  
Afsaneh Fakhar ◽  
Vigneshwaran Shanmugam ◽  
...  

Functionalized polyacrylonitrile (PAN) nanofibers were used in the present investigation to enhance the fracture behavior of carbon epoxy composite in order to prevent delamination if any crack propagates in the resin rich area. The main intent of this investigation was to analyze the efficiency of PAN nanofiber as a reinforcing agent for the carbon fiber-based epoxy structural composite. The composites were fabricated with stacked unidirectional carbon fibers and the PAN powder was functionalized with glycidyl methacrylate (GMA) and then used as reinforcement. The fabricated composites’ fracture behavior was analyzed through a double cantilever beam test and the energy release rate of the composites was investigated. The neat PAN and functionalized PAN-reinforced samples had an 18% and a 50% increase in fracture energy, respectively, compared to the control composite. In addition, the samples reinforced with functionalized PAN nanofibers had 27% higher interlaminar strength compared to neat PAN-reinforced composite, implying more efficient stress transformation as well as stress distribution from the matrix phase (resin-rich area) to the reinforcement phase (carbon/phase) of the composites. The enhancement of fracture toughness provides an opportunity to alleviate the prevalent issues in laminated composites for structural operations and facilitate their adoption in industries for critical applications.


Author(s):  
Sergio Limon ◽  
Peter Martin ◽  
Mike Barnum ◽  
Robert Pilarczyk

The fracture process of energy pipelines can be described in terms of fracture initiation, stable fracture propagation and final fracture or fracture arrest. Each of these stages, and the final fracture mode (leak or rupture), are directly impacted by the tendency towards brittle or ductile behavior that line pipe steels have the capacity to exhibit. Vintage and modern low carbon steels, such as those used to manufacture energy pipelines, exhibit a temperature-dependent transition from ductile-to-brittle behavior that affects the fracture behavior. There are numerous definitions of fracture toughness in common usage, depending on the stage of the fracture process and the behavior or fracture mode being evaluated. The most commonly used definitions in engineering fracture analysis of pipelines with cracks or long-seam weld defects are related to fracture initiation, stable propagation or final fracture. When choosing fracture toughness test data for use in engineering Fracture Mechanics-based assessments of energy pipelines, it is important to identify the stage of the fracture process and the expected fracture behavior in order to appropriately select test data that represent equivalent conditions. A mismatch between the physical fracture event being modeled and the chosen experimental fracture toughness data can result in unreliable predictions or overly conservative results. This paper presents a description of the physical fracture process, behavior and failure modes that pipelines commonly exhibit as they relate to fracture toughness testing, and their implications when evaluating cracks and cracks-like features in pipelines. Because pipeline operators, and practitioners of engineering Fracture Mechanics analyses, are often faced with the challenge of only having Charpy fracture toughness available, this paper also presents a review of the various correlations of Charpy toughness data to fracture toughness data expressed in terms of KIC or JIC. Considerations with the selection of an appropriate correlation for determining the failure pressure of pipelines in the presence of cracks and long-seam weld anomalies will be discussed.


1988 ◽  
Vol 120 ◽  
Author(s):  
J.-M. Yang ◽  
J.-C. Chou ◽  
C. V. Burkland

AbstractThe fracture behavior of a 3-D braided Nicalon fiber-reinforced SiC matrix composite processed by chemical vapor infiltration (CVI) has been investigated. The fracture toughness and thermal shock resistance under various thermomechanical loadings have been characterized. The results obtained indicate that a tough and durable structural ceramic composite can be achieved through the combination of 3-D fiber architecture and the low temperature CVI processing.


1996 ◽  
Vol 43 (5) ◽  
pp. 643-648
Author(s):  
Hiroyuki Takemata ◽  
Tadao Iwadate ◽  
Hajime Kuromasa ◽  
Yasuhiko Tanaka

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 393
Author(s):  
Kei Maeda ◽  
Kosho Akatsuka ◽  
Gaku Okuma ◽  
Atsuo Yasumori

Fracture behavior via a flexural test for a newly found CaO–Al2O3–SiO2 (CAS) glass-ceramic (GC) was compared with that of enstatite GC and mica GC, which are well-known GCs with high-fracture toughness and machinability, respectively. By focusing on the nonelastic load–displacement curves, CAS GC was characterized as a less brittle material similar to machinable mica GC, compared with enstatite GC, which showed higher fracture toughness, KIC. The microcrack toughening mechanism in CAS GC was supported by the nondestructive observation of microcracks around the Vickers indentation using the X-ray microcomputed tomography technique. The CAS GC also showed higher transparency than mica GC due to its low crystallinity. Moreover, the precursor glass had easy formability due to its low-liquidus temperature.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Iman Sedighi ◽  
Majid R. Ayatollahi ◽  
Bahador Bahrami ◽  
Marco A. Pérez-Martínez ◽  
Andrés A. Garcia-Granada

Purpose The purpose of this paper is to study the Mode I fracture behavior of polycarbonate (PC) parts produced using fused deposition modeling (FDM). The focus of this study is on samples printed along the out-of-plane direction with different raster angles. Design/methodology/approach Tensile and Mode I fracture tests were conducted. Semi-circular bend specimens were used for the fracture tests, which were printed in four different raster patterns of (0/90), (15/−75) (30/−60) and (45/−45). Moreover, the finite element method (FEM) was used to determine the applicability of linear elastic fracture mechanics (LEFM) for the printed PC parts. The fracture toughness results, as well as the fracture path and the fracture surfaces, were studied to describe the fracture behavior of the samples. Findings Finite element results confirm that the use of LEFM is allowed for the tested PC samples. The fracture toughness results show that changing the direction of the printed rasters can have an effect of up to 50% on the fracture toughness of the printed parts, with the (+45/−45) and (0/90) orientations having the highest and lowest resistance to crack propagation, respectively. Moreover, except for the (0/90) orientation, the other samples have higher crack resistance compared to the bulk material. The fracture toughness of the tested PC depends more on the toughness of the printed sample, rather than its tensile strength. Originality/value The toughness and the energy absorption capability of the printed samples (with different raster patterns) were identified as the main properties affecting the fracture toughness of the AM PC parts. Because the fracture resistance of almost all the samples was higher than that of the base material, it is evident that by choosing the right raster patterns for 3D-printed parts, very high resistance to crack growth may be obtained. Also, using FEM and comparing the size of the plastic zones, it was concluded that, although the tensile curves show nonlinearity, LEFM is still applicable for the printed parts.


2009 ◽  
Vol 145-146 ◽  
pp. 339-342 ◽  
Author(s):  
Mark Robson ◽  
Kristin A. Fletcher ◽  
Ping Jiang ◽  
Michael B. Korzenski ◽  
A. Upham ◽  
...  

In semiconductor processing, test wafers are used as particle monitors, film thickness monitors for deposition and oxide growth measurements, dry/wet etch rate monitors, CMP monitors, as well as characterizing new and existing equipment and processes. Depending on fab size and capacity, monthly test wafer usage can be tens of thousands or more. Due to the ever increasing demand for silicon between the IC and solar markets and the high cost of 300mm wafers, chip manufacturers are increasing their efforts to reduce overall spending on silicon - currently by far the largest non equipment related cost [1]. One approach taken by many chip makers is the concept of extending the usable life of test wafers by re-using them as many times as possible through a reclaim process.


Sign in / Sign up

Export Citation Format

Share Document