Stem Cell Impregnated Carbon Nanofibers/Nanotubes for Healing Damaged Neural Tissue

2006 ◽  
Vol 915 ◽  
Author(s):  
Jong Eun Lee ◽  
Dongwoo Khang ◽  
Yong Eul Kim ◽  
Thomas Jay Webster

AbstractCarbon nanotubes and nanofibers are intriguing materials for medical applications due to their unique mechanical, electrical, and surface properties which have been shown to enhance neural cell functions compared to other central nervous system implants such as silicon. The objective of this study was to determine if stem cells can be combined with carbon nanofibers in the treatment of stroke damaged neural tissue in rats. Preliminary results demonstrate the ability of stem cells to differentiate into neurons when injected with carbon nanofibers into stroke damaged neural tissue. Moreover, little scar tissue formation was observed. Although preliminary, such results indicate promise for the use of carbon nanofibers as novel stem cell delivery vehicles for neural damage.

2007 ◽  
Vol 30 (6) ◽  
pp. 550-556 ◽  
Author(s):  
P.A. Lucas

Adhesions are bands of fibrous tissue that form between opposing organs and the peritoneum, restricting vital intrapleural and abdominal movement. They remain a major problem in abdominal surgery, occurring in more than three fourths of patients following laparotomy. Adhesions result when injury to the mesothelium is not repaired by mesothelial cells and can be viewed as scar tissue formation. The mechanism of mesothelial healing suggested the involvement of stem cells in the process. It has long been known that peritoneal wounds heal in the same amount of time regardless of size. Therefore, the mesothelium could not regenerate solely by proliferation and centripetal migration of cells at the wound edge as occurs in the healing of skin epithelium. Several studies suggest the presence of i) mesothelial stem cells that can differentiate into mesothelial cells and a few other phenotypes and/or ii) that mesothelial cells are themselves stem cells. Other studies have suggested that adult stem cells in the muscle underlying the peritoneum can differentiate into mesothelial cells and contribute to healing. Prevention of abdominal adhesions have been accomplished by delivery of autologous mesothelial cells and multipotent adult stem cells isolated from skeletal muscle. Adult stem cells from sources other than the serosal tissue offer an alternative treatment modality to prevent the formation of abdominal adhesions.


2020 ◽  
Vol 15 (6) ◽  
pp. 531-546 ◽  
Author(s):  
Hwa-Yong Lee ◽  
In-Sun Hong

Recent studies on the mechanisms that link metabolic changes with stem cell fate have deepened our understanding of how specific metabolic pathways can regulate various stem cell functions during the development of an organism. Although it was originally thought to be merely a consequence of the specific cell state, metabolism is currently known to play a critical role in regulating the self-renewal capacity, differentiation potential, and quiescence of stem cells. Many studies in recent years have revealed that metabolic pathways regulate various stem cell behaviors (e.g., selfrenewal, migration, and differentiation) by modulating energy production through glycolysis or oxidative phosphorylation and by regulating the generation of metabolites, which can modulate multiple signaling pathways. Therefore, a more comprehensive understanding of stem cell metabolism could allow us to establish optimal culture conditions and differentiation methods that would increase stem cell expansion and function for cell-based therapies. However, little is known about how metabolic pathways regulate various stem cell functions. In this context, we review the current advances in metabolic research that have revealed functional roles for mitochondrial oxidative phosphorylation, anaerobic glycolysis, and oxidative stress during the self-renewal, differentiation and aging of various adult stem cell types. These approaches could provide novel strategies for the development of metabolic or pharmacological therapies to promote the regenerative potential of stem cells and subsequently promote their therapeutic utility.


2021 ◽  
Vol 10 (8) ◽  
pp. 1613
Author(s):  
Alessandro Crosio ◽  
Giulia Ronchi ◽  
Benedetta Elena Fornasari ◽  
Simonetta Odella ◽  
Stefania Raimondo ◽  
...  

As a consequence of trauma or surgical interventions on peripheral nerves, scar tissue can form, interfering with the capacity of the nerve to regenerate properly. Scar tissue may also lead to traction neuropathies, with functional dysfunction and pain for the patient. The search for effective antiadhesion products to prevent scar tissue formation has, therefore, become an important clinical challenge. In this review, we perform extensive research on the PubMed database, retrieving experimental papers on the prevention of peripheral nerve scarring. Different parameters have been considered and discussed, including the animal and nerve models used and the experimental methods employed to simulate and evaluate scar formation. An overview of the different types of antiadhesion devices and strategies investigated in experimental models is also provided. To successfully evaluate the efficacy of new antiscarring agents, it is necessary to have reliable animal models mimicking the complications of peripheral nerve scarring and also standard and quantitative parameters to evaluate perineural scars. So far, there are no standardized methods used in experimental research, and it is, therefore, difficult to compare the results of the different antiadhesion devices.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 225
Author(s):  
Claire Racaud-Sultan ◽  
Nathalie Vergnolle

In adult stem cells, Glycogen Synthase Kinase 3β (GSK3β) is at the crossroad of signaling pathways controlling survival, proliferation, adhesion and differentiation. The microenvironment plays a key role in the regulation of these cell functions and we have demonstrated that the GSK3β activity is strongly dependent on the engagement of integrins and protease-activated receptors (PARs). Downstream of the integrin α5β1 or PAR2 activation, a molecular complex is organized around the scaffolding proteins RACK1 and β-arrestin-2 respectively, containing the phosphatase PP2A responsible for GSK3β activation. As a consequence, a quiescent stem cell phenotype is established with high capacities to face apoptotic and metabolic stresses. A protective role of GSK3β has been found for hematopoietic and intestinal stem cells. Latters survived to de-adhesion through PAR2 activation, whereas formers were protected from cytotoxicity through α5β1 engagement. However, a prolonged activation of GSK3β promoted a defect in epithelial regeneration and a resistance to chemotherapy of leukemic cells, paving the way to chronic inflammatory diseases and to cancer resurgence, respectively. In both cases, a sexual dimorphism was measured in GSK3β-dependent cellular functions. GSK3β activity is a key marker for inflammatory and cancer diseases allowing adjusted therapy to sex, age and metabolic status of patients.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 484
Author(s):  
Yue Gao ◽  
Anna Jablonska ◽  
Chengyan Chu ◽  
Piotr Walczak ◽  
Miroslaw Janowski

Rapidly ageing populations are beset by tissue wear and damage. Stem cell-based regenerative medicine is considered a solution. Years of research point to two important aspects: (1) the use of cellular imaging to achieve sufficient precision of therapeutic intervention, and the fact that (2) many therapeutic actions are executed through extracellular vesicles (EV), released by stem cells. Therefore, there is an urgent need to interrogate cellular labels in the context of EV release. We studied clinically applicable cellular labels: superparamagnetic iron oxide nanoparticles (SPION), and radionuclide detectable by two main imaging modalities: MRI and PET. We have demonstrated effective stem cell labeling using both labels. Then, we obtained EVs from cell cultures and tested for the presence of cellular labels. We did not find either magnetic or radioactive labels in EVs. Therefore, we report that stem cells do not lose labels in released EVs, which indicates the reliability of stem cell magnetic and radioactive labeling, and that there is no interference of labels with EV content. In conclusion, we observed that direct cellular labeling seems to be an attractive approach to monitoring stem cell delivery, and that, importantly, labels neither locate in EVs nor affect their basic properties.


2018 ◽  
Vol 7 (8) ◽  
pp. 283-297 ◽  
Author(s):  
Lyn M. Wise ◽  
Gabriella S. Stuart ◽  
Nicola C. Real ◽  
Stephen B. Fleming ◽  
Andrew A. Mercer

Nanoscale ◽  
2020 ◽  
Vol 12 (31) ◽  
pp. 16570-16585 ◽  
Author(s):  
May Zaw Thin ◽  
Helen Allan ◽  
Robin Bofinger ◽  
Tomas D. Kostelec ◽  
Simon Guillaume ◽  
...  

Illustration of adipose-derived stem cells with tri-modal imaging capabilities for evaluating the efficiency of cell delivery to tumours.


Sign in / Sign up

Export Citation Format

Share Document