Bi-stable State for WORM Application Based on Carbazole-containing Polymer

2006 ◽  
Vol 937 ◽  
Author(s):  
Eric Yeow Howee Teo ◽  
Qidan Ling ◽  
Yan Song ◽  
Yoke Ping Tan ◽  
Wen Wang ◽  
...  

ABSTRACTRecently, several studies have been done by various groups to understand the memory effects behind organic materials, which include understanding in terms of conformation changes, conjugation modification and oxidation-reduction process. In this paper, a WORM (write-once read-many times) memory device using a new polymer material 2-(9H-carbazol-9-yl)ethyl methacrylate (PCz) containing carbazole donor group has been demonstrated. The device uses a MIM (metal-insulator-metal) structure with ITO coated glass as bottom electrode, the synthesized polymer material PCz as the active layer and Al as the top electrode. The toluene solution of PCz was spin-coated on the ITO, followed by solvent removal in a vacuum chamber. Finally, Al was thermally evaporated through shadow mask onto the PCz film.The memory effect of PCz was observed in the I-V characteristic of the MIM structure. The as-fabricated device is found to be in its OFF state, and can be programmed to ON state which is not reversible. The WORM device exhibits a high ON/OFF current ratio of up to 106, and shows a good retention time for both the ON and OFF states which can be sustained within a 24 h timeframe, and extrapolated to sustain for another 10 years. The effect of continuous read pulse on the ON and OFF states was evaluated and no resistance degradation is observed for read cycles up to 107 times. By comparing the electrical characteristics of PCz and PVK as well as their optimized geometry simulation corresponding to their minimized energy states, the memory effect or bi-stable states of PCz can be attributed to the long linker between the carbazole groups and backbone present in PCz which play a part in the conduction mechanism.

2021 ◽  
Vol 10 (2) ◽  
pp. 355-367
Author(s):  
Weiyi Yang ◽  
Yan Chen ◽  
Shuang Gao ◽  
Licheng Sang ◽  
Ruoge Tao ◽  
...  

AbstractPhotocatalysts with the photocatalytic “memory” effect could resolve the intrinsic activity loss of traditional photocatalysts when the light illumination is turned off. Due to the dual requirements of light absorption and energy storage/release functions, most previously reported photocatalysts with the photocatalytic “memory” effect were composite photocatalysts of two phase components, which may lose their performance due to gradually deteriorated interface conditions during their applications. In this work, a simple solvothermal process was developed to synthesize Bi2WO6 microspheres constructed by aggregated nanoflakes. The pure phase Bi2WO6 was found to possess the photocatalytic “memory” effect through the trapping and release of photogenerated electrons by the reversible chemical state change of W component in the (WO4)2− layers. When the illumination was switched off, Bi2WO6 microspheres continuously produced H2O2 in the dark as those trapped photogenerated electrons were gradually released to react with O2 through the two-electron O2 reduction process, resulting in the continuous disinfection of Escherichia coli bacteria in the dark through the photocatalytic “memory” effect. No deterioration of their cycling H2O2 production performance in the dark was observed, which verified their stable photocatalytic “memory” effect.


2007 ◽  
Vol 561-565 ◽  
pp. 1699-1701
Author(s):  
Nobuyuki Takahira ◽  
Takeshi Yoshikawa ◽  
Toshihiro Tanaka

Unusual wetting behavior of liquid Cu was found on a surface-oxidized iron substrate in reducing atmosphere. Liquid Cu wetted and spread very widely on the iron substrate when a droplet was attached with the substrate in Ar-10%H2 after the surface oxidation of the substrate. The oxidationreduction process fabricates a porous layer at the surface of the iron substrate. The pores in the porous iron layer are 3-dimensionally interconnected. Thus, liquid metals, which are contacted with the reduced iron samples, penetrate into these pores by capillary force to cause the unusual wetting behavior. It has been already confirmed that liquid Ag, Sn, In and Bi show this phenomenon onto surface-porous iron samples as well as liquid Cu. This unusual wetting behavior of a liquid metal has been correlated to the normal contact angle of the liquid metal on a flat iron substrate.


2021 ◽  
pp. 2151037
Author(s):  
Yu Meng ◽  
Qing Zhong ◽  
Arzugul Muslim

Because −NH2 and −NH− in poly-[Formula: see text]-phenylenediamine (P[Formula: see text]PD) can interact strongly with the empty orbitals of Cu to show unique electrochemical activity, P[Formula: see text]PD is suitable for the removal of Cu[Formula: see text] by electrochemical oxidation–reduction process. In this study, with P[Formula: see text]PD and its carbon dot composite (CDs/P[Formula: see text]PD) as working electrodes, the electrochemical reduction and removal of Cu[Formula: see text] in the aqueous solution were carried out with the potentiostatic method. According to effects of voltage, pH of the solution, initial concentration of Cu[Formula: see text], and electrochemical reduction time on the Cu[Formula: see text] removal, the Cu[Formula: see text] removal ratios of P[Formula: see text]PD and CDs/P[Formula: see text]PD were up to 64.69% and 73.34%, respectively, at −0.2 V and the optimal pH. Additionally, results showed that these processes were in line with the quasi-first order kinetic model. Both P[Formula: see text]PD and CDs/P[Formula: see text]PD showed good reproducibility in six cycles. After five times of repeated usage, the regeneration efficiencies of P[Formula: see text]PD and CDs/P[Formula: see text]PD dropped to 77.04% and 79.36%, respectively.


2018 ◽  
Vol 116 (2) ◽  
pp. 689-694 ◽  
Author(s):  
Edward W. Tekwa ◽  
Eli P. Fenichel ◽  
Simon A. Levin ◽  
Malin L. Pinsky

Understanding why some renewable resources are overharvested while others are conserved remains an important challenge. Most explanations focus on institutional or ecological differences among resources. Here, we provide theoretical and empirical evidence that conservation and overharvest can be alternative stable states within the same exclusive-resource management system because of path-dependent processes, including slow institutional adaptation. Surprisingly, this theory predicts that the alternative states of strong conservation or overharvest are most likely for resources that were previously thought to be easily conserved under optimal management or even open access. Quantitative analyses of harvest rates from 217 intensely managed fisheries supports the predictions. Fisheries’ harvest rates also showed transient dynamics characteristic of path dependence, as well as convergence to the alternative stable state after unexpected transitions. This statistical evidence for path dependence differs from previous empirical support that was based largely on case studies, experiments, and distributional analyses. Alternative stable states in conservation appear likely outcomes for many cooperatively managed renewable resources, which implies that achieving conservation outcomes hinges on harnessing existing policy tools to navigate transitions.


2016 ◽  
Vol 48 (9) ◽  
pp. 969-972
Author(s):  
Hiroshi Takano ◽  
Masafumi Hiraishi ◽  
Shigeru Yaguchi ◽  
Satoru Iwata ◽  
Shin-ichiro Shoda ◽  
...  

2017 ◽  
Vol 5 (37) ◽  
pp. 9799-9805 ◽  
Author(s):  
Guilin Chen ◽  
Peng Zhang ◽  
Lulu Pan ◽  
Lin Qi ◽  
Fucheng Yu ◽  
...  

A non-volatile resistive switching memory effect was observed in flexible memory device based on SrTiO3 nanosheets and polyvinylpyrrolidone composites.


2012 ◽  
Vol 51 (10) ◽  
pp. 104601-1 ◽  
Author(s):  
Kunhua Wen ◽  
Lianshan Yan ◽  
Wei Pan ◽  
Bin Luo ◽  
Zhen Guo ◽  
...  

2012 ◽  
Vol 468-471 ◽  
pp. 286-289
Author(s):  
Ying Zhang ◽  
Hong Wang ◽  
Yan Wang ◽  
Sheng Ping Mao ◽  
Gui Fu Ding

This paper presents the design, fabrication and characterization of single beam for latching electrothermal microswitch. This microswitch consists of two cantilever beams using bimorph electrothermal actuator with mechanical latching for performing low power bistable relay applications. A stable state can be acquired without continuous power which is only needed to switch between two stable states of the microactuator. The single beam is discussed mainly to judge the possibility of realizing the designed function. First, reasonable shape of the resistance is designed using finite element analysis software ANSYS. Then, mechanical performance was characterized by WYKO NT1100 optical profiling system, the tip deflection of single beam can meet the designed demand.


Sign in / Sign up

Export Citation Format

Share Document