Use of High Surface Area TiO2 Nanosheet in Dye-sensitized Solar Cell

2006 ◽  
Vol 951 ◽  
Author(s):  
Sorapong Pavasupree ◽  
Supachai Ngamsinlapasathian ◽  
Yoshikazu Suzuki ◽  
Susumu Yoshikawa

ABSTRACTHigh surface area nanosheet TiO2 with mesoporous structure were synthesized by hydrothermal method at 130 °C for 12 h. The samples characterized by XRD, SEM, TEM, SAED, and BET surface area. The nanosheet structure was slightly curved and approximately 50-100 nm in width and several nanometers in thickness. The as-synthesized nanosheet TiO2 had average pore diameter about 3-4 nm. The BET surface area and pore volume of the sample were about 642 m2/g and 0.774 cm3/g, respectively. The solar energy conversion efficiency (η) of the cell using nanorods/nanoparticles TiO2 (from the nanosheet calcined at 450 °C for 2 h) with mesoporous structure was about 7.08 % with Jsc of 16.35 mA/cm2, Voc of 0.703 V and ff of 0.627; while η of the cell using P-25 reached 5.82 % with Jsc of 12.74 mA/cm2, Voc of 0.704V and ff of 0.649.

2006 ◽  
Vol 951 ◽  
Author(s):  
Sorapong Pavasupree ◽  
Supachai Ngamsinlapasathian ◽  
Yoshikazu Suzuki ◽  
Susumu Yoshikawa

ABSTRACTNanorods/nanoparticles TiO2 with mesoporous structure were synthesized by hydrothermal method at 150 °C for 20 h. The samples characterized by XRD, SEM, TEM, SAED, HRTEM, and BET surface area. The nanorods had diameter about 10-20 nm and the lengths of 100-200 nm, the nanoparticles had diameter about 5-10 nm. The prepared material had average pore diameter about 7-12 nm. The BET surface area and pore volume of the sample are about 203 m2/g and 0.655 cm3/g, respectively. The nanorods/nanoparticles TiO2 with mesoporous structure showed higher photocatalytic activity (I3− concentration) than the nanorods TiO2, nanofibers TiO2, mesoporous TiO2, and commercial TiO2 (ST-01, P-25, JRC-01, and JRC-03). The solar energy conversion efficiency (η) of the cell using nanorods/nanoparticles TiO2 with mesoporous structure was about 7.12 % with Jsc of 13.97 mA/cm2, Voc of 0.73 V and ff of 0.70; while η of the cell using P-25 reached 5.82 % with Jsc of 12.74 mA/cm2, Voc of 0.704 V and ff of 0.649.


2006 ◽  
Vol 974 ◽  
Author(s):  
Sorapong Pavasupree ◽  
Susumu Yoshikawa

ABSTRACTNanorods/nanoparticles TiO2 with mesoporous structure were synthesized by hydrothermal method at 150 °C for 20 h. The samples characterized by XRD, SEM, TEM, SAED, HRTEM, and BET surface area. The nanorods had diameter about 10-20 nm and the lengths of 100-200 nm, the nanoparticles had diameter about 5-10 nm. The prepared material had average pore diameter about 7-12 nm. The BET surface area and pore volume of the sample are about 203 m2/g and 0.655 cm3/g, respectively. The nanorods/nanoparticles TiO2 with mesoporous structure showed higher photocatalytic activity (I3- concentration) than the nanorods TiO2, nanofibers TiO2, mesoporous TiO2, and commercial TiO2 (ST-01, P-25, JRC-01, and JRC-03). The solar energy conversion efficiency (η) of the cell using nanorods/nanoparticles TiO2 with mesoporous structure was about 7.12 % with Jsc of 13.97 mA/cm2, Voc of 0.73 V and ff of 0.70; while η of the cell using P-25 reached 5.82 % with Jsc of 12.74 mA/cm2, Voc of 0.704 V and ff of 0.649.


2011 ◽  
Vol 299-300 ◽  
pp. 106-109
Author(s):  
Mei Zhen Gao ◽  
Zhi Rong Zhang ◽  
Wen Li ◽  
Wen Bao Liu ◽  
Bing Jun Yang

Pure anatase TiO2spheres with mesoporous structure were prepared by a simple urea assisted hydrothermal process at low temperature. The characterization of TiO2was examined by X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), N2adsorption-desorption and ultraviolet visible spectrophotometer (UV-VIS). The TEM and N2adsorption-desorption results confirmed that TiO2spheres has a mesoporous structure. The surface area of TiO2annealed at 400 °C is up to 302.3 m2/g with average pore diameter about 4.1 nm. While after annealed at 500 °C, the average pore diameter of TiO2is about 6.8 nm, but the surface area reduces to 142.6 m2/g


2020 ◽  
Vol 21 (1) ◽  
pp. 77
Author(s):  
Putri Nurul Amalia ◽  
Iman Abdullah ◽  
Dyah Utami Cahyaning Rahayu ◽  
Yuni Krisyuningsih Krisnandi

Carbon dioxide (CO2) is a compound that can potentially be used as a carbon source in the synthesis of fine chemicals. However, the utilization of CO2 is still constrained due to its inert and stable nature. Therefore, the presence of a catalyst is needed in CO2 conversion. This study aims to synthesize copper impregnated mesoporous carbon (Cu/MC) as a catalyst for phenylacetylene carboxylation reaction with CO2 to produce phenylpropiolic acid. The synthesis of mesoporous carbon was performed via the soft template method. The as-synthesized Cu/MC material was characterized by FTIR, SAA, XRD, and SEM-EDX. BET surface area analysis of mesoporous carbon showed that the material has a high surface area of 405.8 m2/g with an average pore diameter of 7.2 nm. XRD pattern of Cu/MC indicates that Cu has been successfully impregnated in the form of Cu(0) and Cu(I). Phenylacetylene carboxylation reaction with CO2 was carried out by varying reaction temperatures (25, 50, and 75 °C), amount of catalyst (28.6, 57.2, and 85.8 mg), type of base (Cs2CO3, K2CO3, and Na2CO3), and variation of support. The reaction mixtures were analyzed by HPLC and showed that the highest phenylacetylene conversion of 41% was obtained for the reaction at 75 °C using Cs2CO3 as a base.


1998 ◽  
Vol 549 ◽  
Author(s):  
F. Kooli ◽  
T. Sasaki ◽  
V. Rives ◽  
M. Watanabe

AbstractA layered titanate with a lepidocrocite-type structure has been pillared with Al13 Keggin ions to prepare a porous and high-surface-area material. Pillaring was achieved by ion exchange of hexylammonium (HA-Ti) or tetrabuthylammonium (TBA-Ti) intercalated titanates with Keggin Al13 complex. The thermal stability of the Al13 intercalates depended on the amount of aluminum incorporated. The surface area and porosity can be tailored by controlling the amount of aluminum uptake and by the nature of base used to prepare the aluminium pillaring solution. In addition, the material derived from HA-Ti exhibited a sharp pore size distribution with an average diameter of 2 nm, while the pillared product obtained from TBA-Ti showed mostly a broad mesoporous distribution with an average pore diameter of 4 nm.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yang Jing ◽  
Wang Yan ◽  
Xu Xiaowen

We report a simple and scalable strategy to synthesize mesoporous SnO2with tin dioxide nanoparticles of 5-6 nm crystalline walls and 3-4 nm pore diameter with the assistance ofMo7O246-as templating agent at room temperature. The samples were characterized by XRD, TEM, UV-DRS, XPS, and BET. The product has a moderately high surface area of 132 m2 g−1and a narrow mesoporous structure with an average pore diameter of 3.5 nm. The photocatalytic activities of the mesoporous SnO2were evaluated by the degradation of methyl orange (MO) in aqueous solution under UV light irradiation.


2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
Victoria Ezeagwula ◽  
Precious Igbokwubiri

Abstract Bamboo trees are one of the fastest growing trees in tropical rainforests around the world, they have various uses ranging from construction to fly ash generation used in oil and gas cementing, to development of activated carbon which is one of the latest uses of bamboo trees. This paper focuses on development of activated carbon from bamboo trees for carbon capture and sequestration. The need for improved air quality becomes imperative as the SDG Goal 12 and SDG Goal13 implies. One of the major greenhouse gases is CO2 which accounts for over 80% of greenhouse gases in the environment. Eliminating the greenhouse gases without adding another pollutant to the environment is highly sought after in the 21st century. Bamboo trees are mostly seen as agricultural waste with the advent of scaffolding and other support systems being in the construction industry. Instead of burning bamboo trees or using them for cooking in the local communities which in turn generates CO2 and fly ash, an alternative was considered in this research work, which is the usage of bamboo trees to generate activated, moderately porous and high surface area carbon for extracting CO2 from various CO2 discharge sources atmosphere and for water purification. This paper focuses on the quality testing of activated carbon that can effectively absorb CO2. The porosity, pore volume, bulk volume, and BET surface area were measured. The porosity of the activated carbon is 27%, BET surface area as 1260m²/g. Fixed carbon was 11.7%, Volatility 73%, ash content 1.7%.


2018 ◽  
Vol 11 (04) ◽  
pp. 1850077 ◽  
Author(s):  
K. L. Jin ◽  
X. J. Chen ◽  
J. C. Xu ◽  
Y. S. Huang ◽  
Y. B. Han ◽  
...  

Mesoporous titanium dioxides nanoparticles (TiO2 NPs) were synthesized using activated carbon (AC) as templates after the decomposition of AC. All results indicated that TiO2 NPs with the small grain size presented the anatase phase structure. Mesoporous TiO2 NPs showed the high surface area and the surface area decreased with the TiO2 content. The removal of methylene blue (MB) indicated that the photocatalytic decomposition efficiency of mesoporous TiO2 NPs increased up to 92% for three-times doping with the TiO2 content, and then decreased. This should be attributed to the synergistic effect from the MB adsorption of mesoporous-structure and the photocatalysis of TiO2 NPs. Therefore, the higher MB concentration near TiO2 NPs from the mesoporous-structure increased the touch chance and the MB photocatalytic decomposition was promoted greatly.


Sign in / Sign up

Export Citation Format

Share Document