scholarly journals Characteristics of Deep Centers Observed in n-GaN Grown by Reactive Molecular Beam Epitaxy

2000 ◽  
Vol 5 (S1) ◽  
pp. 943-949 ◽  
Author(s):  
Z-Q. Fang ◽  
D. C. Look ◽  
Wook Kim ◽  
H. Morkoç

Deep centers in Si-doped n-GaN samples grown on sapphire by reactive molecular beam epitaxy, using different ammonia flow rates (AFRs), have been studied by deep level transient spectroscopy. In addition to five electron traps, which were also found in n-GaN layers grown by both metalorganic chemical-vapor deposition and hydride vapor-phase epitaxy, two new centers C1 (0.43-0.48 eV) and E1 (0.25 eV) have been observed. C1, whose parameters show strong electric-field effects and anomalous electron capture kinetics, might be associated with dislocations. E1, which is very dependent on the AFR, exhibits an activation energy close to that of a center created by electron irradiation and is believed to be a defect complex involving VN.

1999 ◽  
Vol 595 ◽  
Author(s):  
Z-Q. Fang ◽  
D. C. Look ◽  
Wook Kim ◽  
H. Morkoç

AbstractDeep centers in Si-doped n-GaN samples grown on sapphire by reactive molecular beam epitaxy, using different ammonia flow rates (AFRs), have been studied by deep level transient spectroscopy. In addition to five electron traps, which were also found in n-GaN layers grown by both metalorganic chemical-vapor deposition and hydride vapor-phase epitaxy, two new centers C1 (0.43-0.48 eV) and E1 (0.25 eV) have been observed. C1, whose parameters show strong electric-field effects and anomalous electron capture kinetics, might be associated with dislocations. E1, which is very dependent on the AFR, exhibits an activation energy close to that of a center created by electron irradiation and is believed to be a defect complex involving VN.


1997 ◽  
Vol 482 ◽  
Author(s):  
Z-Q. Fang ◽  
J. W. Hemsky ◽  
D. C. Look ◽  
M. P. Mack ◽  
R. J. Molnar ◽  
...  

AbstractA 1-MeV-electron-irradiation (EI) induced trap at Ec-0.18 eV is found in n-type GaN by deep level transient spectroscopy (DLTS) measurements on Schottky barrier diodes, fabricated on both metal-organic-chemical-vapor-deposition and hydride-vapor-phase-epitaxy material grown on sapphire. The 300-K carrier concentrations of the two materials are 2.3 × 1016 cm−3 and 1.3 × 1017 cm−3, respectively. Up to an irradiation dose of 1 × 1015 cm−2, the electron concentrations and pre-existing traps in the GaN layers are not significantly affected, while the EI-induced trap is produced at a rate of at least 0.2 cm−1. The DLTS peaks in the two materials are shifted slightly, possibly due to electric-field effects. Comparison with theory suggests that the defect is most likely associated with the N vacancy or Ga interstitial.


2006 ◽  
Vol 955 ◽  
Author(s):  
Mo Ahoujja ◽  
S Elhamri ◽  
M Hogsed ◽  
Y. K. Yeo ◽  
R. L. Hengehold

ABSTRACTDeep levels in Si doped AlxGa1−xN samples, with Al mole fraction in the range of x = 0 to 0.30, grown by radio-frequency plasma activated molecular beam epitaxy on sapphire substrates were characterized by deep level transient spectroscopy (DLTS). DLTS measurements show two significant electron traps, P1 and P2, in AlGaN at all aluminum mole fractions. The electron trap, P2, appears to be a superposition of traps A and B , both of which are observed in GaN grown by various growth techniques and are thought to be related to VGa-shallow donor complexes. Trap P1 is related to line defects and N-related point defects. Both of these traps are distributed throughout the bulk of the epitaxial layer. An additional trap P0 which was observed in Al0.20Ga0.80N and Al0.30Ga0.70N is of unknown origin, but like P1 and P2, it exhibits dislocation-related capture kinetics. The activation energy measured from the conduction band of the defects is found to increase with Al mole content, a behavior consistent with other III-V semiconductors.


2011 ◽  
Vol 295-297 ◽  
pp. 777-780 ◽  
Author(s):  
M. Ajaz Un Nabi ◽  
M. Imran Arshad ◽  
Adnan Ali ◽  
M. Asghar ◽  
M. A Hasan

In this paper we have investigated the substrate-induced deep level defects in bulk GaN layers grown onp-silicon by molecular beam epitaxy. Representative deep level transient spectroscopy (DLTS) performed on Au-GaN/Si/Al devices displayed only one electron trap E1at 0.23 eV below the conduction band. Owing to out-diffusion mechanism; silicon diffuses into GaN layer from Si substrate maintained at 1050°C, E1level is therefore, attributed to the silicon-related defect. This argument is supported by growth of SiC on Si substrate maintained at 1050°C in MBE chamber using fullerene as a single evaporation source.


1987 ◽  
Vol 92 ◽  
Author(s):  
Akio Kitagawa ◽  
Yutaka Tokuda ◽  
Akira Usami ◽  
Takao Wada ◽  
Hiroyuki kano

ABSTRACTRapid thermal processing (RTP) using halogen lamps for a Si-doped molecular beam epitaxial (MBE) n-GaAs layers was investigated by deep level transient spectroscopy. RTP was performed at 700°C, 800°C and 900°C for 6 s. Two electron traps NI ( Ec-0.5-0.7eV) and EL2 (Ec - 0.82 eV) are produced by RTP at 800 and 900°C.The peculiar spatial variations of the Nl and EL2 concentration across the MBE GaAs films are observed. The larger concentrations of the trap N1 and EL2 are observed near the edge of the samples, and the minima of N1 and EL2 concentration lie between the center and the edge of the sample. It seems that these spatial variations of N1 and EL2 concentration are consistent with that of the thermal stress induced by RTP. Furthermore, the EL2 concentration near the edge of the sample is suppressed by the contact with the GaAs pieces on the edge around the sample during RTP.


1996 ◽  
Vol 442 ◽  
Author(s):  
D. Seghier ◽  
H.P. Gislason

AbstractUsing current-voltage measurements, deep-level transient spectroscopy and admittance spectroscopy we investigated nitrogen doped ZnSe grown on p-GaAs substrates by molecular beam epitaxy. Three major hole traps were observed with energy levels at 0. 11, 0.46, and 0.56 eV from the valence band. We attribute the level at 0.11 eV to a nitrogen acceptor. No other direct observations of this important acceptor level in p-ZnSe have been reported in the literature so far. The two remaining levels may originate from the nitrogen doping process. In addition, reverse current-voltage characteristics of the ZnSe/GaAs heterojunction show a hysteresis at low temperature and a soft saturation. At a constant reverse bias the current increases slowly until it reaches a steady state value. This behavior is attributed to a slow voltage-induced barrier lowering due to the presence of mismatch interface states. Therefore, these analyses are of a major interest for applications of ZnSe/GaAs based devices and illustrates the necessity of improving the growth conditions of such structures.


2005 ◽  
Vol 86 (15) ◽  
pp. 152109 ◽  
Author(s):  
Y. S. Park ◽  
C. J. Park ◽  
C. M. Park ◽  
J. H. Na ◽  
J. S. Oh ◽  
...  

2004 ◽  
Vol 831 ◽  
Author(s):  
M. Ahoujja ◽  
S. Elhamri ◽  
R. Berney ◽  
Y.K. Yeo ◽  
R. L. Hengehold

ABSTRACTElectrical properties of As, Si, and [As+Si] doped GaN films grown on sapphire substrates by low temperature metalorganic chemical vapor deposition have been investigated using temperature dependent Hall-effect and deep level transient spectroscopy measurements. The Hall measurements from the GaN layers show that the concentration decreases with arsine flow (4, 40, and 400 sccm) at all temperatures. The carrier concentration of the Si-doped GaN, on the other hand, increases with the incorporation of arsine flow. This behavior is attributed to the formation of AsGa antisites which act as double donors. A deep level at around 0.82 eV below the conduction in the band gap of As doped GaN is measured by DLTS and is tentatively assigned to arsenic on gallium antisite.


Sign in / Sign up

Export Citation Format

Share Document