Dielectric Properties of PCB Embedded Bismuth-Zinc-Niobium Films Prepared using RF Magnetron Sputtering

2006 ◽  
Vol 969 ◽  
Author(s):  
Seungeun Lee ◽  
Jung Won Lee ◽  
Inhyung Lee ◽  
Yul Kyo Chung

AbstractDielectric properties of bismuth-zinc-niobium oxide (Bi1.5Zn1.0Nb1.5O7, BZN) thin films have been investigated for embedded capacitor. Crystalline BZN has a pyrochlore structure in nature and shows a dielectric constant of ∼ 200 and very low leakage current when crystallized. Since the process temperature is limited to < 200 due to an organic based substrate in printed circuit board, as-deposited BZN film is composed of an amorphous phase, confirmed by XRD analysis. However, it shows remarkably high dielectric constant of 113. It makes BZN to be a proper candidate as a decoupling embedded capacitor in power delivery circuits. Effects of post treatment such as oxygen plasma treatment and low temperature thermal annealing on dielectric properties of BZN thin films are studied. By optimizing deposition conditions, amorphous BZN thin film is well processed in the current PCB process and provides a capacitance density as high as 218 nF/cm2 and leakage current less than 1 μA/cm2 at 3V.

2007 ◽  
Vol 47 (4-5) ◽  
pp. 755-758 ◽  
Author(s):  
Jong-Hyun Park ◽  
Cheng-Ji Xian ◽  
Nak-Jin Seong ◽  
Soon-Gil Yoon ◽  
Seung-Hyun Son ◽  
...  

2011 ◽  
Vol 216 ◽  
pp. 630-634
Author(s):  
Zeng Ping Zhang ◽  
Yong Wen ◽  
Hong Zhao Du ◽  
Jian Zhong Pei ◽  
Shuan Fa Chen

Methylsilsesquioxane (Me-SSQ) was incorporated into cyanate ester resin (CE) to obtain organic-inorganic hybrids with better dielectric properties in this study. First, methyltriethoxysilane was hydrolyzed and condensed to synthesize Me-SSQ. Then several Me-SSQ/CE hybrids containing different contents of Me-SSQ were prepared. The effect of Me-SSQ content on the dielectric and hot/wet properties of materials was investigated. Results showed that the Me-SSQ/CE hybrid containing 20wt% of Me-SSQ shows a dielectric constant of 2.78, which is much lower than the pure CE resin. At the same time, the dielectric loss of the Me-SSQ/CE hybrids was slightly increased (tanδ<0.006). It indicates that Me-SSQ/CE hybrid is a promising matrix materials for high-performance printed circuit board (PCB).


2001 ◽  
Vol 666 ◽  
Author(s):  
Jae-Hoon Choi ◽  
Ji-Woong Kim ◽  
Tae-Sung Oh

ABSTRACTDielectric properties and leakage current characteristics of the Al2O3 thin films, deposited by reactive sputtering at room temperature, have been investigated with variations of the O2 content in the sputtering gas and the film thickness. The Al2O3 films of 10-300 nm thickness were amorphous without depending on the O2 contents of 25-75% in the sputtering gas. Maximum dielectric constant was obtained for the Al2O3 film deposited with the sputtering gas of 50% O2 content. With reduction of the film thickness from 300 nm to 10 nm, dielectric constant decreased from 9.04 to 3.71 and tangent loss increased from 0.0035 to 0.0594, respectively. When the O2 content in the sputtering gas was higher than 50%, the Al2O3 films exhibited no shift of the flatband voltage in C-V curves. The leakage current density increased with increasing the film thickness, and the Al2O3 films thinner than 100 nm exhibited the leakage current densities lower than 10−6 A/cm up to 650 kV/cm.


2010 ◽  
Vol 1247 ◽  
Author(s):  
Manish Kumar ◽  
Shu Xiang ◽  
P. Markondeya Raj ◽  
Isaac Robin Abothu ◽  
Jin-Hyun Hwang ◽  
...  

AbstractThere is an increasing need for integrating high dielectric constant ceramic thin film components in organic and 3D IC packages to lower the power-supply impedance at high frequencies and supply noise-free power to the ICs. Sol-gel approach is very attractive for high density capacitors because of its ability to precisely control the composition of the films and the ease of introducing dopants to engineer the dielectric properties such as breakdown voltages and DC leakage characteristics. Thin films on copper foils lend themselves to organic package integration with standard foil lamination techniques used in package build-up processes. However, fabrication of thin film barium titanate on copper foils is generally affected by process incompatibility during crystallization in reducing atmospheres, leading to poor crystallization, oxygen vacancies and copper diffusion through the film that degrades the electrical properties.This paper focuses on the dielectric properties and electrical reliability of thin films on copper foils. Thin film (300-400 nm) embedded capacitors with capacitance density of 2 μF/cm2, low leakage current and high breakdown voltage were fabricated via sol-gel technology and foil lamination. To lower the leakage current, the chemical composition was altered by incorporating – 1.) Excess barium 2.) Acceptor dopants such as Mn. Both approaches lowered the leakage current compared to that of pure barium titanate. SEM analysis showed enhanced densification and refined grain structure with chemistry modification. The films showed good stability in leakage currents at 150 C with an applied field strength of 100 kV/cm, demonstrating the electrical reliability of these films.


2000 ◽  
Vol 617 ◽  
Author(s):  
Ian W. Boyd ◽  
Jun-Ying Zhang

AbstractIn this paper, UV-induced large area growth of high dielectric constant (Ta2O5, TiO2and PZT) and low dielectric constant (polyimide and porous silica) thin films by photo-CVD and sol-gel processing using excimer lamps, as well as the effect of low temperature LW annealing, are discussed. Ellipsometry, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), UV spectrophotometry, atomic force microscope (AFM), capacitance-voltage (C-V) and current-voltage (I-V) measurements have been employed to characterize oxide films grown and indicate them to be high quality layers. Leakage current densities as low as 9.0×10−8 Acm−2 and 1.95×10−7 Acm−2 at 0.5 MV/cm have been obtained for the as-grown Ta2O5 films formed by photo-induced sol-gel processing and photo-CVD. respectively - several orders of magnitude lower than for any other as-grown films prepared by any other technique. A subsequent low temperature (400°C) UV annealing step improves these to 2.0×10−9 Acm−2 and 6.4× 10−9 Acm−2, respectively. These values are essentially identical to those only previously formed for films annealed at temperatures between 600 and 1000°C. PZT thin films have also been deposited at low temperatures by photo-assisted decomposition of a PZT metal-organic sol-gel polymer using the 172 nm excimer lamp. Very low leakage current densities (10−7 A/cm2) can be achieved, which compared with layers grown by conventional thermal processing. Photo-induced deposition of low dielectric constant organic polymers for interlayer dielectrics has highlighted a significant role of photo effects on the curing of polyamic acid films. I-V measurements showed the leakage current density of the irradiated polymer films was over an order of magnitude smaller than has been obtained in the films prepared by thermal processing. Compared with conventional furnace processing, the photo-induced curing of the polyimide provided both reduced processing time and temperature, A new technique of low temperature photo-induced sol-gel process for the growth of low dielectric constant porous silicon dioxide thin films from TEOS sol-gel solutions with a 172 nm excimer lamp has also been successfully demonstrated. The dielectric constant values as low as 1.7 can be achieved at room temperature. The applications investigated so far clearly demonstrate that low cost high power excimer lamp systems can provide an interesting alternative to conventional UV lamps and excimer lasers for industrial large-scale low temperature materials processing.


2007 ◽  
Vol 124-126 ◽  
pp. 177-180
Author(s):  
Jang Sik Lee ◽  
Q.X. Jia

To investigate the anisotropic dielectric properties of layer-structured bismuth-based ferroelectrics along different crystal directions, we fabricate devices along different crystal orientations using highly c-axis oriented Bi3.25La0.75Ti3O12 (BLT) thin films on (001) LaAlO3 (LAO) substrates. Experimental results have shown that the dielectric properties of the BLT films are highly anisotropic along different crystal directions. The dielectric constants (1MHz at 300 K) are 358 and 160 along [100] and [110], respectively. Dielectric nonlinearity is also detected along these crystal directions. On the other hand, a much smaller dielectric constant and no detectable dielectric nonlinearity in a field range of 0-200 kV/cm are observed for films along [001] when c-axis oriented SRO is used as the bottom electrode.


2015 ◽  
Vol 41 ◽  
pp. S344-S348 ◽  
Author(s):  
Peng Li ◽  
Wei Li ◽  
Shaohui Liu ◽  
Yang Zhang ◽  
Jiwei Zhai ◽  
...  

1995 ◽  
Vol 415 ◽  
Author(s):  
Joon Sung Lee ◽  
Han Wook Song ◽  
Dae Sung Yoon ◽  
Byung Hyuk Jun ◽  
Byoung Gon Yu ◽  
...  

ABSTRACTSrTiO3 thin films were prepared on Si(p-type 100) and Pt/SiO2/Si substrates using ECR plasma (or without ECR plasma) assisted MOCVD. Sr(TMI-D)2 and Ti-isopropoxide were used as Sr and Ti metal organic sources, respectively. Perovskite SrTiO3 films were obtained at relatively low temperature of 500°C (using ECR oxygen plasma. Experimental results indicated that higher deposition temperature and ECR oxygen plasma increase the crystallinity, the dielectric constant and the leakage current density. The dielectric constant and the dielectric loss were 222 and 0.04, respectively, for 1234 Å thin SrTiO3 film (Sr/(Sr+Ti)=0.5). The leakage current density was 3.78 × 10−7 A/cm2 at 1.0V, and the dielectric breakdown field was 0.57MV/cm. SEM analyses showed that SrTiO3 films have a uniform and fine grain structure. In terms of step coverage, a lateral step coverage of 50% at 0.8 μm step (the aspect ratio was 1) was obtained with the thickness uniformity of ± 0.5% and the composition uniformity of ±1.2% at 4′′ wafer.


2006 ◽  
Vol 45 ◽  
pp. 2332-2336
Author(s):  
Ki Hyun Yoon ◽  
Ji Won Choi

The microwave dielectric properties of (300-X) nm MgTiO3/(X) nm CaTiO3 thin films have been investigated with correlation between the interface and stress induced by dielectric layers with heattreatment. As the thickness (X) of CaTiO3 film increased, the dielectric constant increased and the temperature coefficient of the dielectric constant changed from the positive to the negative values by the dielectric mixing rule. The dielectric loss of (300-X) nm MgTiO3/(X) nm CaTiO3 thin films increased with an increase of the thickness (X) of CaTiO3 film because of higher thermal stress induced by the higher thermal expansion coefficient of CaTiO3 than that of MgTiO3.


Sign in / Sign up

Export Citation Format

Share Document