Dielectric Properties and Leakage Current Characteristics of Al2O3 Thin Films with Thickness Variation

2001 ◽  
Vol 666 ◽  
Author(s):  
Jae-Hoon Choi ◽  
Ji-Woong Kim ◽  
Tae-Sung Oh

ABSTRACTDielectric properties and leakage current characteristics of the Al2O3 thin films, deposited by reactive sputtering at room temperature, have been investigated with variations of the O2 content in the sputtering gas and the film thickness. The Al2O3 films of 10-300 nm thickness were amorphous without depending on the O2 contents of 25-75% in the sputtering gas. Maximum dielectric constant was obtained for the Al2O3 film deposited with the sputtering gas of 50% O2 content. With reduction of the film thickness from 300 nm to 10 nm, dielectric constant decreased from 9.04 to 3.71 and tangent loss increased from 0.0035 to 0.0594, respectively. When the O2 content in the sputtering gas was higher than 50%, the Al2O3 films exhibited no shift of the flatband voltage in C-V curves. The leakage current density increased with increasing the film thickness, and the Al2O3 films thinner than 100 nm exhibited the leakage current densities lower than 10−6 A/cm up to 650 kV/cm.

2000 ◽  
Vol 617 ◽  
Author(s):  
Ian W. Boyd ◽  
Jun-Ying Zhang

AbstractIn this paper, UV-induced large area growth of high dielectric constant (Ta2O5, TiO2and PZT) and low dielectric constant (polyimide and porous silica) thin films by photo-CVD and sol-gel processing using excimer lamps, as well as the effect of low temperature LW annealing, are discussed. Ellipsometry, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), UV spectrophotometry, atomic force microscope (AFM), capacitance-voltage (C-V) and current-voltage (I-V) measurements have been employed to characterize oxide films grown and indicate them to be high quality layers. Leakage current densities as low as 9.0×10−8 Acm−2 and 1.95×10−7 Acm−2 at 0.5 MV/cm have been obtained for the as-grown Ta2O5 films formed by photo-induced sol-gel processing and photo-CVD. respectively - several orders of magnitude lower than for any other as-grown films prepared by any other technique. A subsequent low temperature (400°C) UV annealing step improves these to 2.0×10−9 Acm−2 and 6.4× 10−9 Acm−2, respectively. These values are essentially identical to those only previously formed for films annealed at temperatures between 600 and 1000°C. PZT thin films have also been deposited at low temperatures by photo-assisted decomposition of a PZT metal-organic sol-gel polymer using the 172 nm excimer lamp. Very low leakage current densities (10−7 A/cm2) can be achieved, which compared with layers grown by conventional thermal processing. Photo-induced deposition of low dielectric constant organic polymers for interlayer dielectrics has highlighted a significant role of photo effects on the curing of polyamic acid films. I-V measurements showed the leakage current density of the irradiated polymer films was over an order of magnitude smaller than has been obtained in the films prepared by thermal processing. Compared with conventional furnace processing, the photo-induced curing of the polyimide provided both reduced processing time and temperature, A new technique of low temperature photo-induced sol-gel process for the growth of low dielectric constant porous silicon dioxide thin films from TEOS sol-gel solutions with a 172 nm excimer lamp has also been successfully demonstrated. The dielectric constant values as low as 1.7 can be achieved at room temperature. The applications investigated so far clearly demonstrate that low cost high power excimer lamp systems can provide an interesting alternative to conventional UV lamps and excimer lasers for industrial large-scale low temperature materials processing.


2010 ◽  
Vol 434-435 ◽  
pp. 271-274
Author(s):  
Kai Huang Chen ◽  
Cheng Fu Yang ◽  
Chien Chen Diao

In this study, conventional furnace annealing (CFA) is used as the post-treated process, the effects of annealing temperatures on the crystallization and microstructure of (Ba0.7Sr0.3)(Ti0.9 Zr0.1)O3 (BSTZ) thin films will be developed, and the further influences on the electrical properties of BSTZ thin films are also investigated. A previous study made in our laboratory had shown that the dielectric constant and leakage current density of BSTZ thin film with 640 nm thickness are 192 and 10-6 A/cm2 under the frequency of 100 KHz, respectively. However, the maximum dielectric constant and minimum leakage current density of BSTZ thin films under CFA process are 420 (annealed at 800oC) and 10-8 A/cm2 (700oC), respectively. Besides, the X-ray diffraction (XRD) patterns and the SEM morphology show that crystalline features and grain size of BSTZ thin films increase with the increase of CFA-treated temperatures. These experiment results suggest that a strong correlation exhibits that the physical properties will influence the dielectric properties and nucleation features of BSTZ thin films.


2009 ◽  
Vol 08 (01n02) ◽  
pp. 81-85
Author(s):  
A. HUANG ◽  
S. Y. TAN ◽  
S. R. SHANNIGRAHI

Multiferroic Bi 0.95 La 0.05 Fe 0.7 Sc 0.3 O 3 (BLFS) thin films with different thicknesses have been prepared on (1 0 0) LaAlO 3 (LAO) substrates using a sol–gel process and annealed in N 2 ambient at 650°C for 5 min. From the X-ray diffraction (XRD) analysis, it was observed that BLFS thin films had (h 0 0)-preferred orientation for the film thickness 63, 125, 186, and 240 nm and became isotropic thereafter. The films developed in-plane epitaxial growth with respect to the substrate. The surface morphology became denser and the surface roughness increased as thickness increased up to 241 nm. The highest dielectric constant observed for the 241 nm thick BLFS film too. No prominent of the leakage current density observed for the film thickness up to 241 nm. However, two fold increase in the leakage current density observed for the film thickness 382 nm. For the BLFS films with thickness 241 nm, we observed the highest dielectric constant (ε) value of 1675 and remnant polarization (Pr) polarization value of 52 μC/cm2 using a sol–gel spin coating process.


2000 ◽  
Vol 623 ◽  
Author(s):  
M.W. Cole ◽  
P.C. Joshi ◽  
R.L Pfeffer ◽  
C.W. Hubbard ◽  
E. Ngo ◽  
...  

AbstractWe have investigated the dielectric, insulating, structural, microstructural, interfacial, and surface morphological properties of Ba0.60Sr0.40TiO3 thin films Mg doped from 0 to 20 mol%. A strong correlation was observed between the films structural, dielectric and insulating properties as a function of Mg doping. Non textured polycrystalline films with a dense microstructure and abrupt film--Pt electrode interface were obtained after annealing at 750°C for 30 min. Single phase solid solution films were achieved at Mg doping levels up to 5 mol%, while multiphased films were obtained for Mg doping levels of 20 mol%. Decreases in the films dielectric constant, dielectric loss, tunability and leakage current characteristics were paralleled by a reduction in grain size as a function of increasing Mg dopant concentration. Our results suggest that Mg doping serves to limit grain growth and is thereby responsible for lowering the dielectric constant from 450 to 205. It is suggested that Mg behaves as an acceptor-type and is responsible for the doped films low dielectric loss and good leakage current characteristics. Performance-property trade-offs advocates the 5 mol% Mg doped Ba0.60Sr0.40TiO3 film to be an excellent choice for tunable microwave device applications.


2006 ◽  
Vol 969 ◽  
Author(s):  
Seungeun Lee ◽  
Jung Won Lee ◽  
Inhyung Lee ◽  
Yul Kyo Chung

AbstractDielectric properties of bismuth-zinc-niobium oxide (Bi1.5Zn1.0Nb1.5O7, BZN) thin films have been investigated for embedded capacitor. Crystalline BZN has a pyrochlore structure in nature and shows a dielectric constant of ∼ 200 and very low leakage current when crystallized. Since the process temperature is limited to < 200 due to an organic based substrate in printed circuit board, as-deposited BZN film is composed of an amorphous phase, confirmed by XRD analysis. However, it shows remarkably high dielectric constant of 113. It makes BZN to be a proper candidate as a decoupling embedded capacitor in power delivery circuits. Effects of post treatment such as oxygen plasma treatment and low temperature thermal annealing on dielectric properties of BZN thin films are studied. By optimizing deposition conditions, amorphous BZN thin film is well processed in the current PCB process and provides a capacitance density as high as 218 nF/cm2 and leakage current less than 1 μA/cm2 at 3V.


2000 ◽  
Vol 624 ◽  
Author(s):  
Ian W. Boyd ◽  
Jun-Ying Zhang

ABSTRACTIn this paper, UV-induced large area growth of high dielectric constant (Ta2O5, TiO2and PZT) and low dielectric constant (polyimide and porous silica) thin films by photo-CVD and sol-gel processing using excimer lamps, as well as the effect of low temperature UV annealing, are discussed. Ellipsometry, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), UV spectrophotometry, atomic force microscope (AFM), capacitance-voltage (C-V) and current-voltage (I-V) measurements have been employed to characterize oxide films grown and indicate them to be high quality layers. Leakage current densities as low as 9.0×10−8 A·cm−2and 1.95×10−7 A·cm−2at 0.5 MV/cm have been obtained for the as-grown Ta2O5 films formed by photo-induced sol-gel processing and photo-CVD, respectively – several orders of magnitude lower than for any other as-grown films prepared by any other technique. A subsequent low temperature (400°C) UV annealing step improves these to 2.0×10−9A·cm−2and 6.4×10−9A·cm−2, respectively. These values are essentially identical to those only previously formed for films annealed at temperatures between 600 and 1000°C. PZT thin films have also been deposited at low temperatures by photo-assisted decomposition of a PZT metal-organic sol-gel polymer using the 172 nm excimer lamp. Very low leakage current densities (10−7A·cm2) can be achieved, which compared with layers grown by conventional thermal processing. Photo-induced deposition of low dielectric constant organic polymers for interlayer dielectrics has highlighted a significant role of photo effects on the curing of polyamic acid films. I-V measurements showed the leakage current density of the irradiated polymer films was over an order of magnitude smaller than has been obtained in the films prepared by thermal processing. Compared with conventional furnace processing, the photo-induced curing of the polyimide provided both reduced processing time and temperature. A new technique of low temperature photo-induced sol-gel process for the growth of low dielectric constant porous silicon dioxide thin films from TEOS sol-gel solutions with a 172 nm excimer lamp has also been successfully demonstrated. The dielectric constant values as low as 1.7 can be achieved at room temperature. The applications investigated so far clearly demonstrate that low cost high power excimer lamp systems can provide an interesting alternative to conventional UV lamps and excimer lasers for industrial large-scale low temperature materials processing


Author(s):  
T. M. Correia ◽  
Q. Zhang

Full-perovskite Pb 0.87 Ba 0.1 La 0.02 (Zr 0.6 Sn 0.33 Ti 0.07 )O 3 (PBLZST) thin films were fabricated by a sol–gel method. These revealed both rhombohedral and tetragonal phases, as opposed to the full-tetragonal phase previously reported in ceramics. The fractions of tetragonal and rhombohedral phases are found to be strongly dependent on film thickness. The fraction of tetragonal grains increases with increasing film thickness, as the substrate constraint throughout the film decreases with film thickness. The maximum of the dielectric constant ( ε m ) and the corresponding temperature ( T m ) are thickness-dependent and dictated by the fraction of rhombohedral and tetragonal phase, with ε m reaching a minimum at 400 nm and T m shifting to higher temperature with increasing thickness. With the thickness increase, the breakdown field decreases, but field-induced antiferroelectric–ferroelectric ( E AFE−FE ) and ferroelectric–antiferroelectric ( E FE−AFE ) switch fields increase. The electrocaloric effect increases with increasing film thickness. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’.


2001 ◽  
Vol 685 ◽  
Author(s):  
Won-Jae Lee ◽  
Chang-Ho Shin ◽  
In-Kyu You ◽  
Il-Suk Yang ◽  
Sang-Ouk Ryu ◽  
...  

AbstractThe SrTa2O6 (STO) thin films were prepared by plasma enhanced atomic layer deposition (PEALD) with alternating supply of reactant sources, Sr[Ta(C2H5O)5(C4H10NO)]2 {Strontium bis-[tantalum penta-ethoxide dimethyllaminoethoxide]; Sr(Ta(OEt)5▪dmae)2} and O2plasma. It was observed that the uniform and conformal STO thin films were successfully deposited using PEALD and the film thickness per cycle was saturated at about 0.8 nm at 300°C. Electrical properties of SrTa2O6 (STO) thin films prepared on Pt/SiO2/Si substrates with annealing temperatures have been investigated. While the grain size and dielectric constant of STO films increased with increasing annealing temperature, the leakage current characteristics of STO films slightly deteriorated. The leakage current density of a 40nm-STO film was about 5×10−8A/cm2 at 3V.


Sign in / Sign up

Export Citation Format

Share Document