Rapid Crystallization of Amorphous Silicon Utilizing the Plasma Annealing at Atmospheric Pressure

2007 ◽  
Vol 989 ◽  
Author(s):  
Hajime Shirai ◽  
Yusuke Sakurai ◽  
Mina Ye ◽  
Koji Haruta ◽  
Tomohiro Kobayashi ◽  
...  

AbstractThe rapid crystallization of amorphous silicon utilizing the rf inductive coupling thermal plasma jet of argon is demonstrated. Highly crystallized a-Si films were fabricated on th-SiO2 and textured a-Si:H:B/SnO2/glass by adjusting the translational velocity of the substrate stage. The H concentration in the films decreased from 1021 cm-3 to 1019 cm-3 with no marked increases in oxygen and nitrogen impurity concentrations and defect density. The crystallization proceeds from the bottom to front surface in terms of the volume expansion during the solidification and crystallization of liquid Si.

2007 ◽  
Vol 37 (3) ◽  
pp. 315-322 ◽  
Author(s):  
H. Shirai ◽  
Y. Sakurai ◽  
M. Yeo ◽  
T. Kobayashi ◽  
T. Ishikawa

2006 ◽  
Vol 352 (9-20) ◽  
pp. 989-992 ◽  
Author(s):  
Yusuke Sakurai ◽  
Mina Yeo ◽  
Hajime Shirai ◽  
Tomohiro Kobayashi ◽  
Yasuhiro Hasegawa

2013 ◽  
Vol 133 (5) ◽  
pp. 278-285
Author(s):  
Norimitsu Takamura ◽  
Douyan Wang ◽  
Takao Satoh ◽  
Takao Namihira ◽  
Hisato Saitoh ◽  
...  

2003 ◽  
Vol 762 ◽  
Author(s):  
Hwang Huh ◽  
Jung H. Shin

AbstractAmorphous silicon (a-Si) films prepared on oxidized silicon wafer were crystallized to a highly textured form using contact printing of rolled and annealed nickel tapes. Crystallization was achieved by first annealing the a-Si film in contact with patterned Ni tape at 600°C for 20 min in a flowing forming gas (90 % N2, 10 % H2) environment, then removing the Ni tape and further annealing the a-Si film in vacuum for2hrsat600°C. An array of crystalline regions with diameters of up to 20 μm could be formed. Electron microscopy indicates that the regions are essentially single-crystalline except for the presence of twins and/or type A-B formations, and that all regions have the same orientation in all 3 directions even when separated by more than hundreds of microns. High resolution TEM analysis shows that formation of such orientation-controlled, nearly single crystalline regions is due to formation of nearly single crystalline NiSi2 under the point of contact, which then acts as the template for silicide-induced lateral crystallization. Furthermore, the orientation relationship between Si grains and Ni tape is observed to be Si (110) || Ni (001)


AIP Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 025131
Author(s):  
Jie Yu ◽  
Wencong Zhang ◽  
Xiao Wu ◽  
Li Wu ◽  
Junwu Tao ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 683
Author(s):  
Huiliang Jin ◽  
Caixue Tang ◽  
Haibo Li ◽  
Yuanhang Zhang ◽  
Yaguo Li

The continuous phase plate (CPP) is the vital diffractive optical element involved in laser beam shaping and smoothing in high-power laser systems. The high gradients, small spatial periods, and complex features make it difficult to achieve high accuracy when manufacturing such systems. A high-accuracy and high-efficiency surface topography manufacturing method for CPP is presented in this paper. The atmospheric pressure plasma jet (APPJ) system is presented and the removal characteristics are studied to obtain the optimal processing parameters. An optimized iterative algorithm based on the dwell point matrix and a fast Fourier transform (FFT) is proposed to improve the accuracy and efficiency in the dwell time calculation process. A 120 mm × 120 mm CPP surface topography with a 1326.2 nm peak-to-valley (PV) value is fabricated with four iteration steps after approximately 1.6 h of plasma processing. The residual figure error between the prescribed surface topography and plasma-processed surface topography is 28.08 nm root mean square (RMS). The far-field distribution characteristic of the plasma-fabricated surface is analyzed, for which the energy radius deviation is 11 μm at 90% encircled energy. The experimental results demonstrates the potential of the APPJ approach for the manufacturing of complex surface topographies.


Sign in / Sign up

Export Citation Format

Share Document