Energy Harvesting From PZT Nanofibers

2007 ◽  
Vol 1034 ◽  
Author(s):  
Yong Shi ◽  
Yong Shi

AbstractIn this paper, we demonstrated that Lead Zirconate Titanate (PZT) nanofibers can be used to harvest energy from dynamic loading and mechanical vibration. PZT nanofibers were fabricated by electrospinning process. SEM image of PZT nanofibers has shown that the average diameter of these fibers is about 150nm, which can be tuned from 50nm to 200 nm by varying the composition and viscosity of the precursor for electrospining. Titanium substrate with ZrO2 layer was used to collect the PZT nanofibers for the demonstration of energy harvesting from dynamic loading. The largest output voltage is 170mV under 0.5% strain; the frequency of the output voltage is the same as that of the input loading. Silicon substrate with trenches was used to collect the nanofibers for energy harvesting from vibration. The output voltage generated from 150Hz sinusoid vibration source has peak voltages of 64.9mV and -95.9mV. These experimental results suggest that PZT nanofibers have great potentials for energy harvesting from environments and being used as nanogenerators. Further study is under the way to optimize the design and improve the efficiency.

Author(s):  
M. Shafiqur Rahman ◽  
Uttam K. Chakravarty

Hybrid energy harvesting is a concept that can be applied to improve the performance of the conventional standalone energy harvesters. In this study, a hybrid energy harvesting device is presented that harvests energy from solar radiation and mechanical vibration by simultaneously combining the photovoltaic, piezoelectric, electrostatic, and electromagnetic mechanisms. The device consists of a bimorph piezoelectric cantilever beam having Lead Zirconate Titanate crystal layers on top and bottom surfaces of an Aluminum substrate. Two sets of comb electrodes (capacitors) are attached on two sides of the substrate. A permanent magnet is attached at the tip which oscillates within a stationary coil inside a casing. The exterior surface of the casing is covered by organic photovoltaic panel that captures energy from illumination. All the segments are interconnected by an electric circuit to generate combined output when subjected to solar radiation and mechanical vibration. Results for power output are obtained at the first resonance frequency of the beam with a common optimum load resistance. As the power outputs of all the mechanisms are combined, a high power efficiency can be achieved by the proposed hybrid energy harvester.


Author(s):  
Yong Shi ◽  
Shiyou Xu ◽  
Sang-Gook Kim

This paper reports the fabrication of partially aligned Lead Zirconate Titanate (PZT) nanofibers with an average diameter of 150 nm by Sol-Gel Electrospinning process. Both randomly distributed and uniaxially aligned PZT fibers were obtained from the sol-gel PZT solution with viscosity modified by polyvinyl pyrrolidone (PVP). The diameters of the nano fibers can be further reduced or controlled for different applications. SEM, TEM and x-ray diffraction (XRD) are used to characterize the nano-fibers and their crystal structures. XRD confirmed that pure perovskite phase was formed after the as-spun fibers being annealed at about 650°C. Different approaches have been explored to fabricate the uniaxially-aligned PZT nano-fibers. Microelectromechanical (MEMS) based micro-fabrication technologies are used to assist the development of the nano-fibers in designing the test samples, depositing and patterning the electrodes, and also testing the performance of the nano fibers.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2171
Author(s):  
Hyeonsu Han ◽  
Junghyuk Ko

Along with the increase in renewable energy, research on energy harvesting combined with piezoelectric energy is being conducted. However, it is difficult to predict the power generation of combined harvesting because there is no data on the power generation by a single piezoelectric material. Before predicting the corresponding power generation and efficiency, it is necessary to quantify the power generation by a single piezoelectric material alone. In this study, the generated power is measured based on three parameters (size of the piezoelectric ceramic, depth of compression, and speed of compression) that contribute to the deformation of a single PZT (Lead zirconate titanate)-based piezoelectric element. The generated power was analyzed by comparing with the corresponding parameters. The analysis results are as follows: (i) considering the difference between the size of the piezoelectric ceramic and the generated power, 20 mm was the most efficient piezoelectric ceramic size, (ii) considering the case of piezoelectric ceramics sized 14 mm, the generated power continued to increase with the increase in the compression depth of the piezoelectric ceramic, and (iii) For piezoelectric ceramics of all diameters, the longer the depth of deformation, the shorter the frequency, and depending on the depth of deformation, there is a specific frequency at which the charging power is maximum. Based on the findings of this study, PZT-based elements can be applied to cases that receive indirect force, including vibration energy and wave energy. In addition, the power generation of a PZT-based element can be predicted, and efficient conditions can be set for maximum power generation.


Author(s):  
Guitao Zhang ◽  
Yong Shi

In this paper, we demonstrate Lead zirconate titanate (PZT) nanofibers as a transducer to generate and detect ultrasound acoustic waves. PZT nanofibers with average diameter of 102nm were fabricated by the electrospinning method. The as-fabricated nanofibers were collected and aligned across a 10 μm silicon trench with Au electrodes. After annealing, the device was tested with the pulse/delay method. Two resonant frequencies, 8 MHz and 13MHz, were detected respectively. By using the Hamilton’s principle for coupled electromechanical systems with properly assumed mode shape, the resonant frequency was caudated. Base on the current testing result, a broadband ultrasound transducer was envisioned.


2021 ◽  
Vol 9 (1) ◽  
pp. 1321-1328
Author(s):  
Abdul Aziz Khan J , Shanmugaraja P , Kannan S

MEMS Energy Harvesting(EH) devices are excepted to grow in the upcoming years, due to the increasing aspects of MEMS EH devices in vast applications. In Recent advancements in energy harvesting (EH) technologies wireless sensor devices play a vital role to extend their lifetime readily available in natural resources. In this paper the design of MEMS Cantilever at low frequency (100Hz) with different piezoelectric materials Gallium Arsenide (GaAs), Lead Zirconate Titanate (PZT-8), Tellurium Dioxide (TeO2), Zinc oxide (ZnO) is simulated and performance with different materials are compared. The results are analyzed with various parameters such as electric potential voltage, von mises stress, displacement. The paper discusses the suitability of the piezoelectric material for MEMS fully cochlear implantable sensor application.


Author(s):  
Farbod Khameneifar ◽  
Siamak Arzanpour

The concept of harvesting energy in our surrounding has recently drawn global attention. Harvesting the ambient energy of the deflected tire and convert it to electricity is discussed in this paper. An Elastic pneumatic tire deflects due to the load it carries. This deflection appears as a contact patch to the road surface. Initially, the concept of the tire deflection will be discussed. This deflection is then related to the wasted energy used for deflection. The dependency of this energy to some important parameters such as the tire air pressure, vehicle speed and tire geometry and forces are primarily discussed. To harvest the deflection energy different well established methods are exists. Due to the tire environment, piezoelectric transducers can serve as the best option. Those transducers are traditionally used to produce mechanical motion due to the applied electrical charges. This material is also capable of generating electrical charges by mechanical motion and deflections. For the tire energy harvesting application, the piezoelectric stacks can be mounted inside a tire structure such that electric charge is generated therein as the wheel assembly moves along a ground surface. For this application, lead-zirconate-titanate (PZT) is selected. The PZT inside the tire is modeled as a cantilever beam vibration in its first mode of vibration. The frequency of vibration is calculated based on the car speed, tire size, and PZT stack length. A mathematical model for this energy harvesting application is derived. Based on this model, the optimum load of the electrical circuit is also found. Finally the amount of energy harvested from tire using PZT is calculated. Although this energy is not significantly high, it will be enough to provide power for wireless sensors applications.


Author(s):  
Shiyou Xu ◽  
Yong Shi

This paper presented the results of electromechanical characterization of PZT nanofibers through applied mechanical strain and forced vibration. PZT nanofibers were fabricated by electrospinning process. Titanium film with ZrO2 layer was used to collect the nanofibers and also used as the substrates of the test coupons for the bending tests. Mechanical strain was applied to the test coupons through three-point-bending using Dynamic Mechanical Analyzer (DMA). The largest output voltage was 170mV under 0.5% applied strain. Silicon substrate with trenches was also used to collect the PZT nanofibers for the forced vibration tests. The output voltage from 150Hz sinusoid vibration source was also measured. The peaks of the output voltage were 64.9mV and −95.9mV, respectively. These tests have demonstrated the piezoelectric response of PZT nanofibers. Further tests are to be conducted to precisely determine the piezoelectric constants of PZT nanofibers.


2019 ◽  
Vol 23 (5) ◽  
pp. 1010-1023 ◽  
Author(s):  
Naveet Kaur ◽  
Dasari Mahesh ◽  
Sreenitya Singamsetty

Energy harvesting is an emerging technology holding promise of sustainability amid the alarming rate at which the human community is depleting the natural resources to cater its needs. There are several ways of harvesting energy in a renewable fashion such as through solar, wind, hydro-electric, geothermal, and artificial photosynthesis. This study focuses on energy harvesting from wind vibrations and ambient structural vibrations (such as from rail and road bridges) through piezo transducers using the direct piezoelectric effect. First, the potential of the piezoelectric energy harvesting from ambient wind vibrations has been investigated and presented here. Lead zirconate titanate patches have been attached at the fixed end of aluminum rectangular and trapezoidal cantilevers, which have been exposed to varying wind velocity in a lab-size wind tunnel. The effect of perforations and twisting (distortion) on the power generated by the patches under varying wind velocity has also been studied. It has been observed that the power is comparatively higher in rectangular-shaped cantilever than the trapezoidal one. Perforations and shape distortion showed promising result in terms of higher yield. The laboratory experiments have also been extended to the real-life field condition to measure the actual power generated by the lead zirconate titanate patches under the ambient wind vibrations. Next, energy harvesting from the ambient structural vibrations has been done both experimentally and numerically. Four different prototypes have been considered. The power has been measured across the lead zirconate titanate patches individually and in parallel combination. A maximum power output for Prototype 1 to Prototype 4 has been found to be 4.3428, 11.844, 25.97, and 43.12 µW, respectively. Numerical study has also been carried out in ANSYS 14.5 to perform the parametric study to examine the effect of addition of mass at the free end of cantilever. In a nutshell, this article provides a comprehensive study on the effect of various factors on the amount of energy generated by piezoelectric patches under wind and structural vibrations. The energy generated is sufficient for driving low-power-consuming electronics that can further be used for other applications like wireless structural health monitoring, and so on.


2013 ◽  
Vol 8 (1) ◽  
pp. 155892501300800
Author(s):  
François M. Guillot ◽  
Haskell W. Beckham ◽  
Johannes Leisen

In the past few years, the growing need for alternative power sources has generated considerable interest in the field of energy harvesting. A particularly exciting possibility within that field is the development of fabrics capable of harnessing mechanical energy and delivering electrical power to sensors and wearable devices. This study presents an evaluation of the electromechanical performance of hollow lead zirconate titanate (PZT) fibers as the basis for the construction of such fabrics. The fibers feature individual polymer claddings surrounding electrodes directly deposited onto both inside and outside ceramic surfaces. This configuration optimizes the amount of electrical energy available by placing the electrodes in direct contact with the surface of the material and by maximizing the active piezoelectric volume. Hollow fibers were electroded, encapsulated in a polymer cladding, poled and characterized in terms of their electromechanical properties. They were then glued to a vibrating cantilever beam equipped with a strain gauge, and their energy harvesting performance was measured. It was found that the fibers generated twice as much energy density as commercial state-of-the-art flexible composite sensors. Finally, the influence of the polymer cladding on the strain transmission to the fiber was evaluated. These fibers have the potential to be woven into fabrics that could harvest mechanical energy from the environment and could eventually be integrated into clothing.


Sign in / Sign up

Export Citation Format

Share Document