Segmented Power Generator Modules of Bi2Te3 and ErAs:InGaAlAs Embedded with ErAs Nanoparticles

2007 ◽  
Vol 1044 ◽  
Author(s):  
Gehong Zeng ◽  
Je-Hyeong Bahk ◽  
John E. Bowers ◽  
Hong Lu ◽  
Joshua M. O. Zide ◽  
...  

AbstractWe report the fabrication and characterization of segmented element power generator modules of 254 thermoelectric elements. The element is 1 mm × 1 mm in area, which consists of 300 μm thickness Bi2Te3 and 50 μm thickness ErAs:(InGaAs)1-x(InAlAs)x, so that each segment can work at different temperature ranges. Erbium arsenide metallic nanoparticles are incorporated to create scattering centers for middle and long wavelength phonons, provide charge carriers, and form local Schottky barriers for electron filtering. The thermoelectric properties of ErAs:InGaAlAs were characterized by variable temperature measurements of thermal conductivity, electrical conductivity and Seebeck coefficient from 300 K to 600 K. Generator modules of Bi2Te3 and ErAs:InGaAlAs segmented elements were fabricated and an output power over 5.5 W was measured. The performance of the thermoelectric generator modules can further be improved by improving the thermoelectric properties of the element material, and reducing the electrical and thermal parasitic losses.

2008 ◽  
Vol 1129 ◽  
Author(s):  
Gehong Zeng ◽  
Je-Hyeong Bahk ◽  
Ashok T Ramu ◽  
John E Bowers ◽  
Hong Lu ◽  
...  

AbstractWe report the fabrication and characterization of segmented element power generator modules of 16 x 16 thermoelectric elements consisting of 0.8 mm thick Bi2Te3 and 50 μm thick ErAs:(InGaAs)1-x(InAlAs)x with 0.6% ErAs by volume. Erbium Arsenide metallic nanoparticles are incorporated to create scattering centers for middle and long wavelength phonons, and to form local potential barriers for electron filtering. The thermoelectric properties of ErAs:(InGaAs)1-x(InAlAs)x were characterized in terms of electrical conductivity and Seebeck coefficient from 300 K up to 830 K. Generator modules of Bi2Te3 and ErAs:(InGaAs)1-x(InAlAs)x segmented elements were fabricated and an output power of 6.3 W was measured. 3D finite modeling shows that the performance of thermoelectric generator modules can further be enhanced by the improvement of the thermoelectric properties of the element materials, and reducing the electrical and thermal parasitic losses.


Author(s):  
Y. Ezzahri ◽  
R. Singh ◽  
K. Fukutani ◽  
Z. Bian ◽  
A. Shakouri ◽  
...  

Embedded metallic nanoparticles in semiconductors have recently been proven to be of great interest for thermoelectric applications. These metallic nanoparticles play the role of scattering centers for phonons and a source of doping for electrons; they reduce simultaneously the thermal conductivity and increase the thermoelectric power factor of the semiconductor. It has also shown that metal/semiconductor heterostructures can be used to break the crystal momentum symmetry for hot electrons in thermionic devices, then increasing the number of electrons participating in transport. A thermoelectric module of 200 N-P pairs of InGaAlAs with embedded ErAs metallic nanoparticles has been fabricated. Network Identification by Deconvolution (NID) technique is then applied for transient thermal characterization of this thermoelectric module. The combination of this new representation of the dynamic behavior of the packaged device with high resolution thin film temperature measurement allows us to obtain information about heat transfer within the thermoelectric module. This is used to extract the thermal resistances and heat capacitances of the module.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 140
Author(s):  
Lichen Liu ◽  
Ziping Cao ◽  
Min Chen ◽  
Jun Jiang

This paper reports the fabrication and characterization of (Bi0.48Sb1.52)Te3 thick films using a tape casting process on glass substrates. A slurry of thermoelectric (Bi0.48Sb1.52)Te3 was developed and cured thick films were annealed in a vacuum chamber at 500–600 °C. The microstructure of these films was analyzed, and the Seebeck coefficient and electric conductivity were tested. It was found that the subsequent annealing process must be carefully designed to achieve good thermoelectric properties of these samples. Conductive films were obtained after annealing and led to acceptable thermoelectric performance. While the properties of these initial materials are not at the level of bulk materials, this work demonstrates that the low-cost tape casting technology is promising for fabricating thermoelectric modules for energy conversion.


2021 ◽  
Vol 7 (2) ◽  
pp. 44
Author(s):  
Francesca Picca ◽  
Angela Di Pietro ◽  
Mario Commodo ◽  
Patrizia Minutolo ◽  
Andrea D’Anna

In this study, flame-formed carbon nanoparticles of different nanostructures have been produced by changing the flame temperature. Raman spectroscopy has been used for the characterization of the carbon nanoparticles, while the particle size has been obtained by online measurements made by electrical mobility analysis. The results show that, in agreement with recent literature data, a large variety of carbon nanoparticles, with a different degree of graphitization, can be produced by changing the flame temperature. This methodology allows for the synthesis of very small carbon nanoparticles with a size of about 3-4 nm and with different graphitic orders. Under the perspective of the material synthesis process, the variable-temperature flame-synthesis of carbon nanoparticles appears as an attractive procedure for a cost-effective and easily scalable production of highly tunable carbon nanoparticles.


2014 ◽  
Vol 12 (40) ◽  
pp. 7932-7936 ◽  
Author(s):  
Benjamin M. Schulze ◽  
Davita L. Watkins ◽  
Jing Zhang ◽  
Ion Ghiviriga ◽  
Ronald K. Castellano

Reported is characterization of the self-assembly of π-conjugated oligomers, molecules studied recently in photovoltaic devices, using variable temperature diffusion ordered spectroscopy; the approach has allowed estimation of assembly size, shape, and molecularity.


2005 ◽  
Vol 71 (3) ◽  
pp. 1581-1590 ◽  
Author(s):  
Luguang Wu ◽  
Robert G. Birch

ABSTRACT Sucrose isomerase (SI) genes from Pantoea dispersa UQ68J, Klebsiella planticola UQ14S, and Erwinia rhapontici WAC2928 were cloned and expressed in Escherichia coli. The predicted products of the UQ14S and WAC2928 genes were similar to known SIs. The UQ68J SI differed substantially, and it showed the highest isomaltulose-producing efficiency in E. coli cells. The purified recombinant WAC2928 SI was unstable, whereas purified UQ68J and UQ14S SIs were very stable. UQ68J SI activity was optimal at pH 5 and 30 to 35°C, and it produced a high ratio of isomaltulose to trehalulose (>22:1) across its pH and temperature ranges for activity (pH 4 to 7 and 20 to 50°C). In contrast, UQ14S SI showed optimal activity at pH 6 and 35°C and produced a lower ratio of isomaltulose to trehalulose (<8:1) across its pH and temperature ranges for activity. UQ68J SI had much higher catalytic efficiency; the Km was 39.9 mM, the V max was 638 U mg−1, and the K cat/Km was 1.79 × 104 M−1 s−1, compared to a Km of 76.0 mM, a V max of 423 U mg−1, and a K cat/Km of 0.62 × 104 M−1 s−1 for UQ14S SI. UQ68J SI also showed no apparent reverse reaction producing glucose, fructose, or trehalulose from isomaltulose. These properties of the P. dispersa UQ68J enzyme are exceptional among purified SIs, and they indicate likely differences in the mechanism at the enzyme active site. They may favor the production of isomaltulose as an inhibitor of competing microbes in high-sucrose environments, and they are likely to be highly beneficial for industrial production of isomaltulose.


Sign in / Sign up

Export Citation Format

Share Document