Quality and Growth Rate of Hot-wire Chemical Vapor Deposition Epitaxial Si Layers

2008 ◽  
Vol 1066 ◽  
Author(s):  
Charles W Teplin ◽  
Ina T. Martin ◽  
Kim M. Jones ◽  
David Young ◽  
Manuel J. Romero ◽  
...  

ABSTRACTFast epitaxial growth of several microns thick Si at glass-compatible temperatures by the hot-wire CVD technique is investigated, for film Si photovoltaic and other applications. Growth temperature determines the growth phase (epitaxial or disordered) and affects the growth rate, possibly due to the different hydrogen coverage. Stable epitaxy proceeds robustly in several different growth chemistry regimes at substrate temperatures above 600°C. The resulting films exhibit low defect concentrations and high carrier mobilities.

2012 ◽  
Vol 717-720 ◽  
pp. 105-108 ◽  
Author(s):  
Wan Shun Zhao ◽  
Guo Sheng Sun ◽  
Hai Lei Wu ◽  
Guo Guo Yan ◽  
Liu Zheng ◽  
...  

A vertical 3×2〞low pressure chemical vapor deposition (LPCVD) system has been developed to realize fast epitaxial growth of 4H-SiC. The epitaxial growth process was optimized and it was found that the growth rate increases with increasing C/Si ratio and tends to saturate when C/Si ratio exceeded 1. Mirror-like thick 4H-SiC homoepitaxial layers are obtained at 1500 °C and C/Si ratio of 0.5 with a growth rate of 25 μm/h. The minimum RMS roughness is 0.20 nm and the FWHM of rocking curves of epilayers grown for 1 hour and 2 hours are 26.2 arcsec and 32.4 arcsec, respectively. These results indicate that high-quality thick 4H-SiC epilayers can be grown successfully on the off-orientation 4H-SiC substrates.


2006 ◽  
Vol 910 ◽  
Author(s):  
Charles W. Teplin ◽  
Matthew Page ◽  
Eugene Iwaniczko ◽  
Kim M. Jones ◽  
Robert M. Ready ◽  
...  

AbstractWe grow epitaxial silicon films onto (100) silicon wafers from pure silane by hot-wire chemical vapor deposition (HWCVD). The films grow epitaxially for a thickness hepi before a Si:H cones nucleate and expand. We study the dependence of hepi on growth rate and the differences between Ta and W filaments. The surface morphology of thin but completely epitaxial films are studied in order to correlate the surface roughness during growth with the eventual epitaxial breakdown thickness. Surface roughness, strain and H at the wafer/film interface are not likely to cause the observed breakdown.


1989 ◽  
Vol 165 ◽  
Author(s):  
B. Anthony ◽  
T. Hsu ◽  
L. Breaux ◽  
S. Banerjee ◽  
A. Tasch

AbstractIn this paper the reaction kinetics of Remote Plasma-enhanced Chemical Vapor Deposition (RPCVD) are investigated. Growth rate characterization has been performed for substrate temperatures of 220 – 400°C, r-f powers from 4 – 8 W, and silane flow rates of 10 – 30 sccm. Growth rate has been found to increase exponentially with r-f power, which is, as yet, unexplained. An approximate square root dependence of growth rate on silane partial pressure agrees with the theory of Claasen et. Al for Chemical Vapor Deposition (CVD) of silicon from silane with an inert carrier gas. From an Arrhenius plot of the temperature dependence of growth rate, we note a change of slope at ∼300°C which we have attributed to the behavior of hydrogen at the silicon surface.


2012 ◽  
Vol 717-720 ◽  
pp. 109-112 ◽  
Author(s):  
Milan Yazdanfar ◽  
Stefano Leone ◽  
Henrik Pedersen ◽  
Olof Kordina ◽  
Anne Henry ◽  
...  

Epitaxial growth of 4H-SiC on 8º off-axis substrates has been performed under different condition during the temperature ramp up in order to study the effect on the carrot defect. The study was done in a hot wall chemical vapor deposition reactor using the single molecule precursor methyltrichlorosilane (MTS). During the temperature ramp up, a small flow of HCl or C2H4 was added to the H2 ambient to study different surface etching conditions. The best result was obtained when HCl was added from 1175 to 1520 °C during the ramp up to growth temperature (1575 °C).


Sign in / Sign up

Export Citation Format

Share Document