AC Loss Properties in Bi2223 Multifilamentary Tapes with Enhanced Transverse Resistivity by Introducing Oxide Barriers

2008 ◽  
Vol 1099 ◽  
Author(s):  
Ryoji Inada ◽  
Yoshiki Mitsuno ◽  
Kazuma Soguchi ◽  
Yuichi Nakamura ◽  
Akio Oota ◽  
...  

AbstractBi2223 multifilamentary tapes with enhanced transverse resistivity by introducing Ca2CuO3 and SrZrO3 as interfilamentary barriers were prepared and their AC loss properties were examined under AC external magnetic field. To improve the deformation properties of these oxide powders, 20-30wt% Bi2212 powders were mixed with them. The mixed oxide powders were introduced among the twisted Bi2223 filaments by using dip-coating method. AC loss properties under AC parallel or perpendicular field were measured and compared with the results for the tape without barriers. The loss measurements were carried out by changing both the amplitude and the frequency of external field. Based on the experimental results, the effect of barrier introduction on the loss reductions was discussed.

2007 ◽  
Vol 546-549 ◽  
pp. 1849-1854
Author(s):  
Akio Oota ◽  
Ryoji Inada ◽  
Yoshitaka Iwata ◽  
Yuichi Nakamura ◽  
Ping Xiang Zhang

Ag-sheathed Bi2223 composite tapes with interfilamentary resistive barriers were successfully fabricated by using a powder-in-tube (PIT) method and their AC loss properties at 77 K are evaluated. The mixture of Ca2CuO3 and 30 wt% Bi2212 was used as the barrier material for tape fabrication to make an electromagnetic decoupling between the filaments. The barrier layers formed on all surfaces of hexagonal monocore wires by a dip-coating method, and several pieces of the coated wires were stacked and inserted into an Ag tube. Subsequently, the composites deformed into tape shape and subjected to a standard process consisting of a flat rolling and sintering. Degradations in the Jc values at 77 K and self-field by introducing the barriers were estimated to be at most 15%. The transverse resistivity and AC loss properties under AC external magnetic fields for the barrier tapes were examined and compared with those for the tape without barriers. The results showed that an introduction of Ca2CuO3 barriers was effective to suppress the electromagnetic coupling among the filaments and also to reduce the magnetization losses under parallel transverse field. The fabrication of the barrier tapes on the order of several meters, together with the uniformity of superconducting properties along a length direction has been also presented.


2000 ◽  
Vol 628 ◽  
Author(s):  
Kazuki Nakanishi ◽  
Souichi Kumon ◽  
Kazuyuki Hirao ◽  
Hiroshi Jinnai

ABSTRACTMacroporous silicate thick films were prepared by a sol-gel dip-coating method accompanied by the phase separation using methyl-trimethoxysilane (MTMS), nitric acid and dimethylformamide (DMF) as starting components. The morphology of the film varied to a large extent depending on the time elapsed after the hydrolysis until the dipping of the coating solution. On a glass substrate, the films prepared by early dipping had inhomogeneous submicrometer-sized pores on the surface of the film. At increased reaction times, relatively narrow sized isolated macropores were observed and their size gradually decreased with the increase of reaction time. On a polyester substrate, in contrast, micrometer-sized isolated spherical gel domains were homogeneously deposited by earlier dippings. With an increase of reaction time, the volume fraction of the gel phase increased, then the morphology of the coating transformed into co-continuous gel domains and macropores, and finally inverted into the continuous gel domains with isolated macropores. The overall morphological variation with the reaction time was explained in terms of the phase separation and the structure freezing by the forced gelation, both of which were induced by the evaporation of methanol during the dipping operation.


2021 ◽  
Vol 1115 (1) ◽  
pp. 012028
Author(s):  
P T P Aryanti ◽  
G Trilaksono ◽  
A Hotmaida ◽  
M A Afifah ◽  
F P Pratiwi ◽  
...  

Author(s):  
Gözde Çelebi Efe ◽  
Elif Yenilmez ◽  
İbrahim Altinsoy ◽  
Serbülent Türk ◽  
Cuma Bindal

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
M. Selin Sunay ◽  
Onder Pekcan ◽  
Saziye Ugur

Steady-state fluorescence (SSF) technique in conjunction with UV-visible (UVV) technique and atomic force microscope (AFM) was used for studying film formation from TiO2covered nanosized polystyrene (PS) latex particles (320 nm). The effects of film thickness and TiO2content on the film formation and structure properties of PS/TiO2composites were studied. For this purpose, two different sets of PS films with thicknesses of 5 and 20 μm were prepared from pyrene-(P-) labeled PS particles and covered with various layers of TiO2using dip-coating method. These films were then annealed at elevated temperatures above glass transition temperature () of PS in the range of 100–280°C. Fluorescence emission intensity, from P and transmitted light intensity, were measured after each annealing step to monitor the stages of film formation. The results showed that film formation from PS latexes occurs on the top surface of PS/TiO2composites and thus developed independent of TiO2content for both film sets. But the surface morphology of the films was found to vary with both TiO2content and film thickness. After removal of PS, thin films provide a quite ordered porous structure while thick films showed nonporous structure.


2019 ◽  
Vol 32 (6) ◽  
pp. 611-619 ◽  
Author(s):  
Xiaoli Liu ◽  
Zhen Ge ◽  
Wenguo Zhang ◽  
Yunjun Luo

Due to their unique physicochemical properties, polysilazanes exhibit excellent performance when combined with some resin matrixes, which had drawn great research attention. In this article, polyurethane (PU) was firstly prepared by polytetrahydrofuran glycol, isophorone diisocyanate, and 1,4-butanediol as main materials. Then, the prepared PU was blended with polysilazane by mixing the two solutions together, which was cured to films via dip-coating method at room temperature. The structure, thermal stability, and surface properties of the composite coatings were investigated by Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. The results demonstrated that after modification with polysilazane, the heat resistance, hydrophobicity, and mechanical property of the PU coatings were improved. When the content of polysilazane was 6 wt%, the mechanical property of the composite films was optimized, with a maximum tensile strength of 25.7 MPa and elongation at break of 797%. Meanwhile, the water contact angle of the composite film was 107° and the water absorption reached a minimum of 2.1%, which showed improved hydrophobicity and water resistance.


Langmuir ◽  
2014 ◽  
Vol 30 (30) ◽  
pp. 9028-9035 ◽  
Author(s):  
J. Dugay ◽  
R. P. Tan ◽  
A. Loubat ◽  
L.-M. Lacroix ◽  
J. Carrey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document