scholarly journals Molecular Characterisation of Dissolved Organic Matter (DOM) in Groundwaters from the Äspö Underground Research Laboratory, Sweden: A Novel “Finger Printing Tool for Palaeohydrological Assessment

2008 ◽  
Vol 1107 ◽  
Author(s):  
Christopher H. Vane ◽  
Alexander W. Kim ◽  
Antoni E. Milodowski ◽  
John Smellie ◽  
Eva-Lena Tullborg ◽  
...  

AbstractThe molecular signature of dissolved organic matter (DOM) in groundwaters can be used as a tool when investigating the palaeohydrological response of groundwater systems in relation to changes in recharge environment, and also for examining groundwater compartmentalisation, mixing and transport at underground repositories for radioactive waste. The DOM in groundwaters from two compartmentalised bodies of groundwater of distinctly different origin within the Äspö Underground Research Laboratory (URL), Sweden and in Baltic seawater has been isolated using tangential flow ultrafiltration (TUF) and diafiltration. Recoveries of DOM ranged from 34.7 to 0.1 mg/L with substantial differences in the concentrations of the groundwaters collected only 120 m apart. Analysis by infrared spectroscopy (IR) and pyrolysisgas chromatography-mass spectrometry (Py-GC-MS) of the isolated DOM revealed that the groundwaters contained abundant alkylphenols which may represent heavily decomposed proteins or lignins originating from biopolymers contained within soils. The difference in the distribution and relative abundance of major pyrolysis products groups such as alkyphenols confirmed that the groundwater and Baltic seawater DOM samples were chemically distinct indicating minimal infiltration of marine groundwater derived by recharge from the Baltic or earlier Littorina Sea within the two compartmentalised groundwater bodies.

2014 ◽  
Vol 132 ◽  
pp. 106-115 ◽  
Author(s):  
Karol Kuliński ◽  
Bernd Schneider ◽  
Karoline Hammer ◽  
Ulrike Machulik ◽  
Detlef Schulz-Bull

Ocean Science ◽  
2016 ◽  
Vol 12 (4) ◽  
pp. 1013-1032 ◽  
Author(s):  
Justyna Meler ◽  
Piotr Kowalczuk ◽  
Mirosława Ostrowska ◽  
Dariusz Ficek ◽  
Monika Zabłocka ◽  
...  

Abstract. This study presents three alternative models for estimating the absorption properties of chromophoric dissolved organic matter aCDOM(λ). For this analysis we used a database containing 556 absorption spectra measured in 2006–2009 in different regions of the Baltic Sea (open and coastal waters, the Gulf of Gdańsk and the Pomeranian Bay), at river mouths, in the Szczecin Lagoon and also in three lakes in Pomerania (Poland) – Obłęskie, Łebsko and Chotkowskie. The variability range of the chromophoric dissolved organic matter (CDOM) absorption coefficient at 400 nm, aCDOM(400), lay within 0.15–8.85 m−1. The variability in aCDOM(λ) was parameterized with respect to the variability over 3 orders of magnitude in the chlorophyll a concentration Chl a (0.7–119 mg m−3). The chlorophyll a concentration and aCDOM(400) were correlated, and a statistically significant, nonlinear empirical relationship between these parameters was derived (R2 =  0.83). On the basis of the covariance between these parameters, we derived two empirical mathematical models that enabled us to design the CDOM absorption coefficient dynamics in natural waters and reconstruct the complete CDOM absorption spectrum in the UV and visible spectral domains. The input variable in the first model was the chlorophyll a concentration, and in the second one it was aCDOM(400). Both models were fitted to a power function, and a second-order polynomial function was used as the exponent. Regression coefficients for these formulas were determined for wavelengths from 240 to 700 nm at 5 nm intervals. Both approximations reflected the real shape of the absorption spectra with a low level of uncertainty. Comparison of these approximations with other models of light absorption by CDOM demonstrated that our parameterizations were superior (bias from −1.45 to 62 %, RSME from 22 to 220 %) for estimating CDOM absorption in the optically complex waters of the Baltic Sea and Pomeranian lakes.


2020 ◽  
Vol 589 ◽  
pp. 125120
Author(s):  
Yijun Yang ◽  
Xiaofang Yuan ◽  
Yamin Deng ◽  
Xianjun Xie ◽  
Yiqun Gan ◽  
...  

2017 ◽  
Vol 5 ◽  
Author(s):  
Michael Seidel ◽  
Marcus Manecki ◽  
Daniel P. R. Herlemann ◽  
Barbara Deutsch ◽  
Detlef Schulz-Bull ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Shigemitsu ◽  
T. Yokokawa ◽  
H. Uchida ◽  
S. Kawagucci ◽  
A. Murata

AbstractMicrobial community structure in the hadal water is reported to be different from that in the upper abyssal water. However, the mechanism governing the difference has not been fully understood. In this study, we investigate the vertical distributions of humic-like fluorescent dissolved organic matter (FDOMH), chemoautotrophic production, apparent oxygen utilization (AOU), and N* in the Izu-Ogasawara Trench. In the upper abyssal waters (< 6000 m), FDOMH has a significantly positive correlation with AOU; FDOMH deviates from the relationship and increases with depth without involving the increment of AOU in the hadal waters. This suggests that FDOMH is transferred from the sediments to the hadal waters through pore water, while the FDOMH is produced in situ in the upper abyssal waters. Chemoautotrophic production and N* increases and decreases with depth in the hadal waters, respectively. This corroborates the effluxes of dissolved substances, including dissolved organic matter and electron donors from sediments, which fuels the heterotrophic/chemoautotrophic microbial communities in the hadal waters. A simple box model analysis reveals that the funnel-like trench topography facilitates the increase in dissolved substances with depth in the hadal waters, which might contribute to the unique microbiological community structure in these waters.


2020 ◽  
Author(s):  
Maren Voss ◽  
Eero Asmala ◽  
Ines Bartl ◽  
Jacob Carstensen ◽  
Daniel J. Conley ◽  
...  

Abstract Coastal waters have strong gradients in dissolved organic matter (DOM) quantity and characteristics, originating from terrestrial inputs and autochthonous production. Enclosed seas with high freshwater input therefore experience high DOM concentrations and gradients from freshwater sources to more saline waters. The brackish Baltic Sea experiences such salinity gradients from east to west and from river mouths to the open sea. Furthermore, the catchment areas of the Baltic Sea are very diverse and vary from sparsely populated northern areas to densely populated southern zones. Coastal systems vary from enclosed or open bays, estuaries, fjords, archipelagos and lagoons where the residence time of DOM at these sites varies and may control the extent to which organic matter is biologically, chemically or physically modified or simply diluted with transport off-shore. Data of DOM with simultaneous measurements of dissolved organic (DO) nitrogen (N), carbon (C) and phosphorus (P) across a range of contrasting coastal systems are scarce. Here we present data from the Roskilde Fjord, Vistula and Öre estuaries and Curonian Lagoon; four coastal systems with large differences in salinity, nutrient concentrations, freshwater inflow and catchment characteristics. The C:N:P ratios of DOM of our data, despite high variability, show site specific significant differences resulting largely from differences residence time. Microbial processes seemed to have minor effects, and only in spring did uptake of DON in the Vistula and Öre estuaries take place and not at the other sites or seasons. Resuspension from sediments impacts bottom waters and the entire shallow water column in the Curonian Lagoon. Finally, our data combined with published data show that land use in the catchments seems to impact the DOC:DON and DOC:DOP ratios of the tributaries most.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 953
Author(s):  
Wenwen Wang ◽  
Binghui Zheng ◽  
Xia Jiang ◽  
Junyi Chen ◽  
Shuhang Wang

Lake Hulun, the fifth largest lake in China, is a typical eutrophic steppe lake located in the Hulun Buir Prairie. The dissolved organic matter (DOM) in the water of Lake Hulun has a high concentration. However, little is known about the occurrence characteristics and source of the DOM in Lake Hulun. The spatial and temporal distribution characteristics of DOM concentration in Lake Hulun were thoroughly surveyed, and the optical characteristics, fluorescence components and sources of DOM were analyzed by excitation emission matrix (EMM) and parallel factor analysis (PARAFAC) technology. The DOM concentration was 6.46–42.87 mg C/L, and was highest in summer and lowest in winter. The difference in the spatial distribution of DOM in winter was significant due to the ice over, and showed a trend where the concentration near the shore was higher than that in the center of the lake. Three humic-like components and one component consisting of a mixture of humic-like and protein-like substances of DOM were identified, with the former being prevalent. The humification index of DOM was 2.22–9.92, indicating that the DOM has a high degree of humification. The DOM is mainly derived from terrestrial sources, with the highest proportion (91.0% ± 8.1%) found in winter and the lowest (66.2% ± 7.7%) in summer. Given that the DOM in Lake Hulun is mainly dominated by humic-like components with a high degree humification, the DOM may have low bioactivity. However, this is just a preliminary analysis and judgment, and it is necessary to conduct other experiments such as biodegradation experiments to further study the bioavailability of DOM in Lake Hulun.


2018 ◽  
Vol 202 ◽  
pp. 27-36 ◽  
Author(s):  
Owen F. Rowe ◽  
Julie Dinasquet ◽  
Joanna Paczkowska ◽  
Daniela Figueroa ◽  
Lasse Riemann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document