Evaluating Chemical Toxicity of Surface Disposal of LILW-SL in Belgium

2008 ◽  
Vol 1107 ◽  
Author(s):  
D. Mallants ◽  
L. Wang ◽  
E. Weetjens ◽  
W. Cool

AbstractONDRAF/NIRAS is developing and evaluating a surface disposal concept for low and intermediate level short-lived radioactive waste (LILW-SL) at Dessel, Belgium. In support of ONDRAF/NIRAS's assignment, SCK•CEN carried out long-term performance assessment calculations for the inorganic non-radioactive components that are present in LILW-SL. This paper summarizes the results obtained from calculations that were done for a heavily engineered surface disposal facility at the nuclear zone of Mol/Dessel. The calculations address the migration of chemotoxic elements from the disposed waste to groundwater.Screening calculations were performed first to decide which non-radioactive components could potentially increase concentrations in groundwater to levels above the groundwater standards. On the basis of very conservative calculations, only 6 out of 41 chemical elements could not be classified as having a negligible impact on man and environment. For each of these six elements (B, Be, Cd, Pb, Sb, and Zn), the source term was characterized in terms of its chemical form (i.e., metal, oxide, or salt), and a macroscopic transport model built that would capture the small-scale dissolution processes relevant to element release from a cementitious waste container. Furthermore, reliable transport parameters in support of the convection-dispersion-retardation (CDR) transport calculations were determined. This included derivation of (1) solubility for a cementitious near field environment based on thermodynamic equilibrium calculations with The Geochemist's Workbench, and (2) distribution coefficients based on a compilation of literature values. Scoping calculations illustrated the effects of transport parameter uncertainty on the rates at which inorganic components in LILW-SL leach to groundwater.

2009 ◽  
Vol 13 (2) ◽  
pp. 217-228 ◽  
Author(s):  
P. Y. Chou ◽  
G. Wyseure

Abstract. Groundwater and river-water have a different composition and interact in and below the riverbed. The riverbed-aquifer flux interactions have received growing interest because of their role in the exchange and transformation of nutrients and pollutants between rivers and the aquifer. In this research our main purpose is to identify the physical processes and characteristics needed for a numerical transport model, which includes the unsaturated recharge zone, the aquifer and the riverbed. In order to investigate such lateral groundwater inflow process, a laboratory J-shaped column experiment was designed. This study determined the transport parameters of the J-shaped column by fitting an analytical solution of the convective-dispersion equation for every flux on individual segments to the observed breakthrough curves of the resident concentration, and by inverse modelling for every flux simultaneously over the entire flow domain. The obtained transport-parameter relation was tested by numerical simulation using HYDRUS 2-D/3-D. Four steady-state flux conditions (i.e. 0.5 cm hr−1, 1 cm hr−1, 1.5 cm hr−1 and 2 cm hr−1) were applied, transport parameters including pore water velocity and dispersivity were determined for both unsaturated and saturated sections along the column. Results showed that under saturated conditions the dispersivity was fairly constant and independent of the flux. In contrast, dispersivity under unsaturated conditions was flux dependent and increased at lower flux. For our porous medium the dispersion coefficient related best to the quotient of the pore water velocity divided by the water content. A simulation model of riverbed-aquifer flux interaction should take this into account.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Julita Stadnicka-Michalak ◽  
Nadine Bramaz ◽  
René Schönenberger ◽  
Kristin Schirmer

AbstractQuantification of chemical toxicity in small-scale bioassays is challenging owing to small volumes used and extensive analytical resource needs. Yet, relying on nominal concentrations for effect determination maybe erroneous because loss processes can significantly reduce the actual exposure. Mechanistic models for predicting exposure concentrations based on distribution coefficients exist but require further validation with experimental data. Here we developed a complementary empirical model framework to predict chemical medium concentrations using different well-plate formats (24/48-well), plate covers (plastic lid, or additionally aluminum foil or adhesive foil), exposure volumes, and biological entities (fish, algal cells), focusing on the chemicals’ volatility and hydrophobicity as determinants. The type of plate cover and medium volume were identified as important drivers of volatile chemical loss, which could accurately be predicted by the framework. The model focusing on adhesive foil as cover was exemplary cross-validated and extrapolated to other set-ups, specifically 6-well plates with fish cells and 24-well plates with zebrafish embryos. Two case study model applications further demonstrated the utility of the empirical model framework for toxicity predictions. Thus, our approach can significantly improve the applicability of small-scale systems by providing accurate chemical concentrations in exposure media without resource- and time-intensive analytical measurements.


1986 ◽  
Vol 84 ◽  
Author(s):  
Mark M. Doxtader ◽  
Victor A. Maroni ◽  
James V. Beitz ◽  
Michael Heaven

The Basalt Waste Isolation Project (Rockwell Hanford Operations- BWIP) is investigating the feasibility of building a repository in the Columbia River Basalts for the permanent disposal of high-level nuclear waste. One aspect of this effort is to develop an understanding of the chemical behavior of radionuclides in the near-field environment of the waste container. Such information is needed to determine radionuclide release rates from the waste package and to make long-term projections of repository performance. To accomplish this task, ultrasensitive laser- based techniques, such as laser photoacoustic spectroscopy (LPAS) and laser induced fluorescence (LIF), are being developed as analytical methods for the trace-level detection and speciation of actinides in solutions typical of those encountered in groundwaters near the BWIP repository.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1141
Author(s):  
Ángel Encalada-Dávila ◽  
Mayken Espinoza-Andaluz ◽  
Julio Barzola-Monteses ◽  
Shian Li ◽  
Martin Andersson

A polymer electrolyte fuel cell (PEFC) is an electrochemical device that converts chemical energy into electrical energy and heat. The energy conversion is simple; however, the multiphysics phenomena involved in the energy conversion process must be analyzed in detail. The gas diffusion layer (GDL) provides a diffusion media for reactant gases and gives mechanical support to the fuel cell. It is a complex medium whose properties impact the fuel cell’s efficiency. Therefore, an in-depth analysis is required to improve its mechanical and physical properties. In the current study, several transport phenomena through three-dimensional digitally created GDLs have been analyzed. Once the porous microstructure is generated and the transport phenomena are mimicked, transport parameters related to the fluid flow and mass diffusion are computed. The GDLs are approximated to the carbon paper represented as a grouped package of carbon fibers. Several correlations, based on the fiber diameter, to predict their transport properties are proposed. The digitally created GDLs and the transport phenomena have been modeled using the open-source library named Open Pore Network Modeling (OpenPNM). The proposed correlations show a good fit with the obtained data with an R-square of approximately 0.98.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 314
Author(s):  
Tianyu Jing ◽  
Huilan Ren ◽  
Jian Li

The present study investigates the similarity problem associated with the onset of the Mach reflection of Zel’dovich–von Neumann–Döring (ZND) detonations in the near field. The results reveal that the self-similarity in the frozen-limit regime is strictly valid only within a small scale, i.e., of the order of the induction length. The Mach reflection becomes non-self-similar during the transition of the Mach stem from “frozen” to “reactive” by coupling with the reaction zone. The triple-point trajectory first rises from the self-similar result due to compressive waves generated by the “hot spot”, and then decays after establishment of the reactive Mach stem. It is also found, by removing the restriction, that the frozen limit can be extended to a much larger distance than expected. The obtained results elucidate the physical origin of the onset of Mach reflection with chemical reactions, which has previously been observed in both experiments and numerical simulations.


2020 ◽  
Vol 70 (3) ◽  
pp. 283-292
Author(s):  
Daniel Way ◽  
Frederick A. Kamke ◽  
Arijit Sinha

Abstract Development of moisture gradients within wood and wood-based composites can result in irreversible moisture-induced damage. Accelerated weathering (AW), generally employing harsh environmental conditions, is a common tool for assessing moisture durability of wood composite products. Use of milder AW conditions, such as cyclic changes in relative humidity (RH), may be of interest to the wood-based composites industry in assessing moisture durability under more realistic conditions. The primary objective of this study was to determine whether moisture profile development in oriented strand board and plywood during cyclic RH changes could be reasonably predicted with a simple moisture transport model, which may be practical for wood-based composite industry members seeking to develop new AW protocols. The diffusion model based on Fick's second law with empirically determined moisture transport parameters fits the experimental data reasonably well for the purpose of screening RH parameters.


2017 ◽  
Vol 10 (6) ◽  
pp. 2231-2246 ◽  
Author(s):  
Sudhakar Dipu ◽  
Johannes Quaas ◽  
Ralf Wolke ◽  
Jens Stoll ◽  
Andreas Mühlbauer ◽  
...  

Abstract. The regional atmospheric model Consortium for Small-scale Modeling (COSMO) coupled to the Multi-Scale Chemistry Aerosol Transport model (MUSCAT) is extended in this work to represent aerosol–cloud interactions. Previously, only one-way interactions (scavenging of aerosol and in-cloud chemistry) and aerosol–radiation interactions were included in this model. The new version allows for a microphysical aerosol effect on clouds. For this, we use the optional two-moment cloud microphysical scheme in COSMO and the online-computed aerosol information for cloud condensation nuclei concentrations (Cccn), replacing the constant Cccn profile. In the radiation scheme, we have implemented a droplet-size-dependent cloud optical depth, allowing now for aerosol–cloud–radiation interactions. To evaluate the models with satellite data, the Cloud Feedback Model Intercomparison Project Observation Simulator Package (COSP) has been implemented. A case study has been carried out to understand the effects of the modifications, where the modified modeling system is applied over the European domain with a horizontal resolution of 0.25°  ×  0.25°. To reduce the complexity in aerosol–cloud interactions, only warm-phase clouds are considered. We found that the online-coupled aerosol introduces significant changes for some cloud microphysical properties. The cloud effective radius shows an increase of 9.5 %, and the cloud droplet number concentration is reduced by 21.5 %.


Sign in / Sign up

Export Citation Format

Share Document