Low-Temperature Heteroepitaxy of β-SiC on Si (111) Substrates

1988 ◽  
Vol 116 ◽  
Author(s):  
T. Eshita ◽  
T. Suzuki ◽  
T. Hara ◽  
F. Mieno ◽  
Y. Furumura ◽  
...  

AbstractWe developed a heteroepitaxial growth technique for large-area β-SiC films on Si substrates without buffer layers at 850ºC and 1000ºC. The substrates were vicinal 4-inch (111) Si wafers. The β-SiC films had smooth surfaces and were crack-free. X-ray diffraction and electron diffraction analysis revealed that the films grown at 1000ºC were single crystals. Satisfactory characteristics were obtained in aMOSFET with a β-SiC/Si02/poly-Si substrate structure. Our evaluations indicate that the β-SiC films were high-quality crystals.

2009 ◽  
Vol 615-617 ◽  
pp. 149-152 ◽  
Author(s):  
Andrea Severino ◽  
Ruggero Anzalone ◽  
Corrado Bongiorno ◽  
M. Italia ◽  
Giuseppe Abbondanza ◽  
...  

The choice of off-axis (111) Si substrates is poorly reported in literature despite of the ability of such an oriented Si substrate in the reduction of stacking faults generation and propagation. The introduction of off-axis surface would be relevant for the suppression of incoherent boundaries. We grew 3C-SiC films on (111) Si substrates with a miscut angle from 3° to 6° along <110> and <11 >. The film quality was proved to be high by X-Ray diffraction (XRD) characterization. Transmission electron microscopy was performed to give an evaluation of the stacking fault density while pole figures were conducted to detect microtwins. Good quality single crystal 3C-SiC films were finally grown on 6 inch off-axis (111)Si substrate. The generated stress on both 2 and 6 inch 3C-SiC wafers has been analyzed and discussed.


1991 ◽  
Vol 220 ◽  
Author(s):  
Yasuaki Hirano ◽  
Taroh Inada

Single crystal β-SiC films have been fabricated on (100)Si substrates through a thermal reaction between the substrate and carbon atoms sublimed from a high purity graphite source. The substrate temperature during the deposition ranged from 600 to 1100°C. The film properties were analyzed by RHEED and x-ray diffraction measurements. RBS measurements and TEM observations have also been made to investigate the film properties. The single crystal β-SiC films grow at and above 1000°C on (100) substrates. The activation energy is found to be around 1.1 eV for the crystallization process.


1993 ◽  
Vol 302 ◽  
Author(s):  
T. J. de Lyon ◽  
S. M. Johnson ◽  
C. A. Cockrum ◽  
O. K. Wu ◽  
J. A. Roth

ABSTRACTEpitaxial films of ZnTe(100) and CdZnTe(100)/ZnTe(100) have been deposited by molecular-beam epitaxy onto Si(100) substrates misoriented from 0-8 degrees towards the [011] direction. The films were characterized with x ray diffraction, photoluminescence spectroscopy, optical microscopy, and stylus profilometry. Through use of ZnTe buffer layers, single crystal CdZnTe(100) films have been demonstrated on both 4° and 8° misoriented Si with structural quality comparable to that obtained with GaAs/Si composite substrates. X ray rocking curves for ZnTe(400) with FWHM less than 300 arcseconds and for CdZnTe(400) with FWHM less than 160 arcseconds have been obtained for as-grown films. The observed surface morphologies are superior to those obtained on GaAs/Si composite substrates. HgCdTe(100) films with x ray FWHM as low as 55 arcseconds and average etch pit densities of 5 x 106 cm−2 have been deposited by liquid phase epitaxy on these MBE CdZnTe/ZnTe/Si substrates.


1994 ◽  
Vol 299 ◽  
Author(s):  
T. J. de Lyon ◽  
S. M. Johnson ◽  
C. A. Cockrum ◽  
O. K. Wu ◽  
J. A. Roth

AbstractEpitaxial films of ZnTe(100) and CdZnTe(100)/ZnTe(100) have been deposited by molecular-beam epitaxy onto Si(100) substrates misoriented from 0–8 degrees towards the [011] direction. The films were characterized with x ray diffraction, photoluminescence spectroscopy, optical microscopy, and stylus profilometry. Through use of ZnTe buffer layers, single crystal CdZnTe(100) films have been demonstrated on both 4° and 8° misoriented Si with structural quality comparable to that obtained with GaAs/Si composite substrates. X ray rocking curves for ZnTe(400) with FWHM less than 300 arcseconds and for CdZnTe(400) with FWHM less than 160 arcseconds have been obtained for as-grown films. The observed surface morphologies are superior to those obtained on GaAs/Si composite substrates. HgCdTe(100) films with x ray FWHM as low as 55 arcseconds and average etch pit densities of 5 × 106 cm−2 have been deposited by liquid phase epitaxy on these MBE CdZnTe/ZnTe/Si substrates.


2011 ◽  
Vol 383-390 ◽  
pp. 7619-7623
Author(s):  
Z Z Lu ◽  
F. Yu ◽  
L. Yu ◽  
L. H. Cheng ◽  
P. Han

In this work, Si, Ge element composition distribution in Ge /Si1-xGex:C /Si substrate structure has been characterized and modified by planar scanning energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The Ge /Si1-xGex:C /Si substrate samples are grown by chemical vapor deposition (CVD) method. The accuracy of EDS value can be improved by ~ 32%. And the modified EDS results indicate the Ge distribution in the Ge/Si1-xGex:C/Si sub structure.


2005 ◽  
Vol 862 ◽  
Author(s):  
Kanji Yasui ◽  
Jyunpei Eto ◽  
Yuzuru Narita ◽  
Masasuke Takata ◽  
Tadashi Akahane

AbstractThe crystal growth of SiC films on (100) Si and thermally oxidized Si (SiO2/Si) substrates by hot-mesh chemical vapor deposition (HMCVD) using monomethylsilane as a source gas was investigated. A mesh structure of hot tungsten (W) wire was used as a catalyzer. At substrate temperatures above 750°C and at a mesh temperature of 1600°C, 3C-SiC crystal was epitaxially grown on (100) Si substrates. From the X-ray rocking curve spectra of the (311) peak, SiC was also epitaxially grown in the substrate plane. On the basis of the X-ray diffraction (XRD) measurements, on the other hand, the growth of (100)-oriented 3C-SiC films on SiO2/Si substrates was determined to be achieved at substrate temperatures of 750-800°C, while polycrystalline SiC films, at substrate temperatures above 850°C. From the dependence of growth rate on substrate temperature and W-mesh temperature, the growth mechanism of SiC crystal by HMCVD was discussed.


2005 ◽  
Vol 891 ◽  
Author(s):  
Tomohiko Takeuchi ◽  
Suzuka Nishimura ◽  
Tomoyuki Sakuma ◽  
Satoru Matumoto ◽  
Kazutaka Terashima

ABSTRACTBoronmonophosphide(BP) is one of the suitable materials for a buffer layer between the c-GaN(100) and Si(100) substrates. The growth of BP layer was carried out by MOCVD on Si(100) substrate of 2 inch in diameter. The growth rate was over 2 μm/h without any troubles such as the bowing or cracking. In addition, the thickness of BP epitaxial layer was uniform over a wide area. A careful analysis of x-ray diffraction suggested that the growth of BP epitaxial layer inherited the crystal orientation from Si(100) substrate. Cross-sectional TEM images showed some defects like dislocations near the interface between BP layer and Si substrate. The Hall effect measurements indicated that the conduction type of BP films grown on the both n-Si and p-Si substrates was n-type without impurity doping, and that the mobility and carrier concentrations were typically 357cm2/Vs and 1.5×1020cm−3(on n-Si) and 63cm2/Vs and 1.9×1019cm−3(on p-Si), respectively. In addition, c-GaN was grown on the substrate of BP/Si(100) by RF-MBE.


1994 ◽  
Vol 359 ◽  
Author(s):  
S. Henke ◽  
B. Rauschenbach ◽  
B. Stritzker

ABSTRACTBy deposition of C60 on silicon at moderate temperatures (800°C … 900°C) the formation of thin epitaxial β-SiC-films on Si could be proved. C60 -molecules were deposited onto Si(001) and Si(111) in high-vacuum at constant deposition rates for some hours. The thickness and the composition of the formed layers are determined by Rutherford-Backscattering (RBS). The thickness of the layers varied between about 50nm and 200nm in dependence of the deposition parameters. From the shape of the RBS-spectra only β-SiC can be identified. SiC-grains with a mean size of about 500 nm have been observed by atomic force microscopy (AFM). X-ray diffraction (XRD) pole figure measurements demonstrate the heteroepitaxial growth of β-SiC on Si It can be shown by XRD that only the cubic structure (β-SiC) of the different polytypes of SiC was formed during the carbonization process. The formation of growth defects (twins) can be observed.


1992 ◽  
Vol 242 ◽  
Author(s):  
G. L. Doll ◽  
T. A. Perry ◽  
J. A. Sell ◽  
C. A. TAYLORS ◽  
R. Clarke

ABSTRACTNew x-ray diffraction measurements performed on bonm nitride films deposited by pulsed excimer laser deposition are presented. The x-ray data, taken with both a molybdenum rotating anode source and synchrotron radiation, indicate that the epitaxial cBN films are ≤ 200 Å thick. We also report the successful growth of oriented crystalline diamond on the (001) surface of cBN/Si substrates using the method of pulsed laser deposition. X-ray diffraction measurements indicate that the diamond layer is 200 Å thick with a lattice constant of 3.56 Å. The structures of metastable films (cBN and diamond) are very sensitive to growth conditions: we present evidence that an epitaxial-crystalline to incoherent phase transition occurs when the thickness of the films exceeds a critical value (∼ 200 Å for our present growth conditions).


MRS Advances ◽  
2019 ◽  
Vol 4 (13) ◽  
pp. 749-754 ◽  
Author(s):  
Masahiro Nakahara ◽  
Moeko Matsubara ◽  
Shota Suzuki ◽  
Shogo Fukami ◽  
Marwan Dhamrin ◽  
...  

AbstractThe impact of the Al and Ge ratio in the Al-Ge pastes are investigated for fabricating the single crystalline Si1-xGex thick layers on large area Si substrates by screen-printing metallization process. From X-ray reciprocal space maps, Ge fraction in the fabricated Si1-xGex thick layers are found to increase up to 40% with increasing the Ge ratio in the Al-Ge pastes. On the other hand, the interface of the Si and Si1-xGex layers are getting winding with increasing the Ge ratio in the Al-Ge pastes. The Al-Si-Ge phase diagram indicated that uniform SiGe layer can be fabricated by adjusting the Al-Ge ratio in the pastes within the liquid phase region.


Sign in / Sign up

Export Citation Format

Share Document