Polymer-Titania Composites for Photocatalysis of Organics in Aqueous Environments

2009 ◽  
Vol 1171 ◽  
Author(s):  
Cecil A Coutinho ◽  
Vinay K Gupta

AbstractMicrocomposites composed of titanium dioxide nanoparticles embedded within cross-linked, thermally responsive microgels of poly(N-isopropylacrylamide) were prepared. These microcomposites showed rapid sedimentation, which is useful for gravity separation of the titania nanoparticles in applications such as environmental remediation. To investigate the degradation kinetics using these microcomposites in aqueous suspensions, methyl orange was employed as a model contaminant. The decline in the methyl orange concentration was monitored using UV-Vis spectroscopy. Degradation of methyl orange was also measured using only nanoparticles TiO2 (DegussaTM P25) for comparison with the microcomposites. Experiments were performed at different pH conditions that spanned acidic, neutral, and basic conditions to gain insight into the interplay of TiO2 surface charge, ionization of the polyelctrolyte chains in the microcomposites, and ionization of the methyl orange.

2011 ◽  
Vol 110-116 ◽  
pp. 3801-3806 ◽  
Author(s):  
Xiao Zhi Wang ◽  
Qian Qian Gao ◽  
Hai Tao Zhao ◽  
Ke Feng ◽  
Rong Guo

Different environmental remediation materials were prepared by using Cetyltrimethylammonium Bromide (CTMAB) and/or TiO2to surface-modify expanded perlite (EP). Photocatalytic degradation of Methyl Orange in polluted water by these materials (CTMAB-EP, TiO2/CTMAB-EP, TiO2-EP and EP), adsorption/ degradation kinetics and relevant factors affecting degradation effects were studied. The results showed that EP had little ability to remove Methyl Orange in water, while EP modified with CTMAB and/or TiO2could remove Methyl Orange (MO) significantly, and TiO2/CTMAB-EP treatment showed the highest removal rate in all treatments. Removal effects of the materials were influenced by dosage of material, shaking time and initial concentration of MO in water. These results indicated that nanoTiO2/CTMAB-Expanded perlite can be used as a new and promising environmental remediation material in efficient removal of organic pollutant from environment.


2011 ◽  
Vol 332-334 ◽  
pp. 134-137 ◽  
Author(s):  
Xiao Dong Hu ◽  
Hua Deng ◽  
Lin Du

Sol - gel method and doped with Fe3+ modification techniques were used, prepared for high catalytic activity of iron-doped titanium dioxide nanoparticles,which loaded on the activated carbon for Degradation of Methyl Orange. Such as crystal structure, particle size, load morphology, chemical state and optical absorption characteristics of the doped titania nanoparticles were characterized by using XRD, SEM, and UV-Vis. Fe-TiO2 catalysts for visible light response and the catalytic degradation of methyl orange in water performance were studied. The results showed that: catalysts prepared were anatase, the particle size decreases with the more amount of iron-doped. The phenomenon of Fe3+-modified TiO2 red shift were obviously. Compared with the undoped catalyst,degradation of Fe3+-TiO2 containing activated carbon improved significantly both in the UV and fluorescent light.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nimisha Jadon ◽  
Gulzar Ahmad Bhat ◽  
Manoharmayum Vishwanath Sharma ◽  
Harendra Kumar Sharma

Background: The study focuses on the synthesis of chitosan/ Fe2O3 nanocomposite, its characterization and application in methyl orange dye degradation. Methods: The synthesized chitosan/ Fe2O3 nanocomposite was characterized with Powder X-Ray Diffraction, Fourier Transformation Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and UV-Vis Spectroscopy. Results: The characterization showed that the Fe2O3nanoparticles were embedded in the polymer matrix of chitosan. The size of the Fe2O3nanoparticles were less than 10nm and the crystallite size was 1.22 nm.The synthesized chitosan/ Fe2O3nanocomposite was tested for methyl orange degradation using different parameters such as effect of contact time, effect of dose, effect of concentration and effect of pH for the degradation of methyl orange dye in aqueous solution.The Fruendlich, Langmuir and Temkin isotherm studies were also conducted for adsoption of methyl orange on Chitosan/ Fe2O3nanocomposite. Conclusion: The study indicated that the synthesized chitosan/Fe2O3 nanocomposite had the potential of degrading methyl orange dye up to 75.04% under the set condition in this experiment which indicate that Chitosan/ Fe2O3 nanocomposite is a viable option that can be used for the degradation of methyl orange dye.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Marco Serra ◽  
Hermenegildo Garcia

Alkali digestion of titanium nanoparticles leads, after neutralization, to the formation of titanate nanotubes with long aspect ratio. One salient change in the formation of titanate nanotubes is the observation of an extended visible absorption band up to 550 nm, responsible for their brown colour. Combination of titanate nanotubes with commercial titanium dioxide nanoparticles, either Evonik P25 or Millennium PC500, results in an enhanced photocatalytic activity for hydrogen generation from water-methanol mixtures. This synergy between the two titanium semiconductors has an optimum for a certain proportion of the two components and is observed in both the absence and the presence of platinum or gold nanoparticles. The best efficiency under simulated sunlight irradiation was for a combination of 12 wt.% titanate nanotubes containing 0.32 wt.% platinum in 88 wt.% Millennium PC500, where a two-time increase in the hydrogen generation is observed versus the activity of Millennium PC500 containing platinum. This synergy is proposed to derive from the interfacial electron transfer from titanate nanotubes undergoing photoexcitation at wavelengths in which Millennium PC500 does not absorb this form of titania nanoparticles. Our results illustrate how the combination of several titanium semiconductors can result in an enhancement efficiency with respect to their individual components.


2018 ◽  
Vol 79 (5) ◽  
pp. 947-957 ◽  
Author(s):  
Mahabubur Chowdhury ◽  
Sarah Kapinga ◽  
Franscious Cummings ◽  
Veruscha Fester

Abstract Advanced oxidation processes based on sulphate radical generated by peroxymonosulphate (PMS) activation is a promising area for environmental remediation. One of the biggest drawbacks of heterogeneous PMS activation is catalyst instability and metal ion leaching. In this study, a simple organic binder mediated route was explored to substitute Ti4+ ions into the Co3O4 host lattice structure to create a Co-O-Ti bond to minimise cobalt leaching during methyl orange degradation. The catalyst was characterised by X-ray diffraction, and scanning and transmission electron microscopy. The as-prepared catalysts with Co3O4:TiO2 ratio of 70:30 exhibited minimal leaching (0.9 mg/L) compared to other ratios studied. However, the pristine Co3O4 exhibited highest catalytic activity (rate constant = 0.41 min−1) and leaching (26.7 mg/L) compared to composite material (70:30 Co3O4:TiO2). Interestingly, the morphology of the composite and leaching of Co2+ ions were found to be temperature dependent, as an optimum temperature ensured strong Co-O-Ti bond for prevention of Co2+ leaching. The classical quenching test was utilised to determine the presence and role of radical species on methyl orange degradation. The fabricated catalyst also exhibited good catalytic activity in degrading mixed dyes and good recyclability, making it a potential candidate for commercial application.


2022 ◽  
Vol 3 (1) ◽  
pp. 19-34
Author(s):  
Susan Alkurdi ◽  
Raed Al-Juboori ◽  
Jochen Bundschuh ◽  
Alla Marchuk

The reuse of waste materials for water treatment purposes is an important approach for promoting the circular economy and achieving effective environmental remediation. This study examined the use of bone char/titanium dioxide nanoparticles (BC/nTiO2) composite and UV for As(III) and As(V) removal from water. The composite was produced via two ways: addition of nTiO2 to bone char during and after pyrolysis. In comparison to the uncoated bone char pyrolyzed at 900 °C (BC900), nTiO2 deposition onto bone char led to a decrease in the specific surface area and pore volume from 69 to 38 m2/g and 0.23 to 0.16 cm3/g, respectively. However, the pore size slightly increased from 14 to 17 nm upon the addition of nTiO2. The composite prepared during pyrolysis (BC/nTiO2)P had better As removal than that prepared after pyrolysis with the aid of ultrasound (BC/nTiO2)US (57.3% vs. 24.8%). The composite (BC/nTiO2)P had higher arsenate oxidation than (BC/nTiO2)US by about 3.5 times. Arsenite oxidation and consequent adsorption with UV power of 4, 8 and 12 W was examined and benchmarked against the composite with visible light and BC alone. The highest UV power was found to be the most effective treatment with adsorption capacity of 281 µg/g followed by BC alone (196 µg/g). This suggests that the effect of surface area and pore volume loss due to nTiO2 deposition can only be compensated by applying a high level of UV power.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1046
Author(s):  
M. Sharmila ◽  
R. Jothi Mani ◽  
Abdul Kader ◽  
Awais Ahmad ◽  
Gaber E. Eldesoky ◽  
...  

The innovation and development of water purification methods have been at the center of extensive research for several decades. Many nanoparticles are frequently seen in industrial waste water. In this research, zinc oxide nanoparticles (ZnO) were synthesized following an autocombustion method with and without honey capping. Structural crystallinity and bonding structure were examined via X-ray diffraction (XRD) analysis and Fourier transform infrared (FTIR) spectroscopy. Optical behavior was analyzed using ultraviolet–visible (UV–Vis) spectroscopy and photoluminescence (PL). Size estimation and surface morphology were studied using scanning electron microscopy (SEM), while energy-dispersive spectroscopy (EDS) was performed to analyze the sample purity and elemental composition. The photocatalytic degradation of methylene blue (MB) by ZnO was assessed as it is an efficient water treatment process with high potential. The biological activity of ZnO nanoparticles was also investigated in terms of antibacterial and antifungal activities against different bacterial and fungal species. Surprisingly, the as-synthesized ZnO nanoparticles were found to be substantially bioactive compared to conventional drugs. Honey-mediated nanoparticles displayed 86% dye degradation efficiency, and that of bare ZnO was 60%. Therefore, the involvement of honey in the synthesis of ZnO nanoparticles has great potential due to its dual applicability in both biological and environmental remediation processes.


2015 ◽  
Vol 10 (2) ◽  
Author(s):  
Iwan Sumarlan

Abstrak: Dispersi TiO2 ke dalam montmorilonit terpilar aluminium (PILM) telah sukses dilakukan. Fotokatalis dibuat dengan menginterkalasikan Al13 ke dalam montmorilonit alam kemudian dikalsinasi pada temperatur 500oC. Dispersi TiO2 ke dalam montmorilonit terpilar aluminium (PILM) dilakukan dengan menggunakan metode impregnasi dengan konsentrasi teoritis 0,4%, 0,8% 1% dan 3%. Fotodegradasi metil oranye optimum diperoleh pada Ti/PILM 1%, pH 10, konsentrasi metil oranye 1,5 M dan konsentrasi katalis 1 gram/liter dengan laju konstanta orde satu sebesar 21,77x10-3 per menit.Kata kunci : Metil Oranye, Montmorilonit,Optimasi, Fotokatalis, TiO2Abstract: Dispersion of TiO2 on montmorillonite pillared aluminium has been done successfully. The photocatalyst were prepared by intercalation of Al13 onto natural montmorillonite and then calcined at 500oC. Titania dispersion onto aluminium pillared montmorillonite was carried out by impregnation method at the theoritic concentration of 0.4%, 0.8%, 1% and 3% titania. Photodegradation optimum of methyl orange was found to be at Ti/PILM 1%, pH 10, methyl orange concentration 1.5 M and concentration of photocatalyst 1 gram/litre. The photodegradation follows first order reaction with constan rate of 21.77x10-3 per minutes.Key Word: Methyl Orange, Montmorillonite, Optimation, Photocatalyst, TiO2


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Pardon Nyamukamba ◽  
Omobola Okoh ◽  
Lilian Tichagwa ◽  
Corinne Greyling

Herein, we describe the synthesis of titanium dioxide (TiO2) nanoparticles by the hydrolysis and condensation of titanium tetrachloride. The resulting nanoparticles were immobilized on polyacrylonitrile (PAN) based nanofibres by an electrospinning technique in order to allow simple isolation and reuse of titania semiconductor photocatalyst. The composite nanofibres were heat treated to convert the polymer nanofibres to carbon nanofibres and to convert amorphous TiO2to crystalline TiO2. X-ray diffraction (XRD) analysis showed that the rutile phase was the major phase and the equatorial peaks of PAN disappeared after heat treatment at 600°C. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis confirmed that some TiO2nanoparticles were encapsulated whereas some were surface residing on the electrospun nanofibres. The TiO2nanoparticles were found to lower the cyclization temperature of PAN as indicated by differential scanning colorimetry (DSC) and differential thermal analysis (DTA). Photocatalytic studies on the degradation of methyl orange dye under UV light irradiation showed that composite nanofibres were capable of degrading organic contaminants in water. The carbon nanofibres with surface residing titanium dioxide nanoparticles (TiO2/CNF-SR) showed the highest photocatalytic activity (59.35% after 210 minutes) due to direct contact between the TiO2photocatalyst and methyl orange.


Sign in / Sign up

Export Citation Format

Share Document