The MAESFLO Device: A Complete Microfluidic Control System

2009 ◽  
Vol 1191 ◽  
Author(s):  
Jacques Goulpeau ◽  
Vélan Taniga ◽  
Charles-André Kieffer

AbstractIn spite of considerable efforts, flow control in micro-channels remains a challenge owing to the very small ratio of channel/supply-system volumes, as well as the induction of spurious flows by extremely small pressure or geometry changes. We present here a robust and complete system for flow control in complex microchannel network that both monitors and controls all the flow relevant parameters, that is to say flow rate and pressure. Based on a dynamic control of reservoir pressures at the end of each channel and external thermal flow-sensors, all the parameters are measured with a precision down to 25 μBar and 2nL/min. Thanks to adaptative feed back control loop, the MAESFLO can control either the flow rate or the pressure with high stability over long period whatever the microsystem characteristics. Compared to classic pumps, a significant increase of stability has been reached as no mechanical parts are involved. Indeed the flow rate is pulse free and is stable down to 0.1% of the full scale. Besides, pressure control enables to achieve short response time (less than hundreds of millisec). The MAESFLO is thus a unique system to control flow in complex network architecture and can be considered as an alternative to integrated micro-valves using only external equipments. Indeed, the MAESFLO can stop the flow to nearly zero in one or several branches of a complex microfluidic network while keeping other flows constant. Sequential manipulation of liquids in a definite part of a micro-device is thus possible without expensive and time consuming fabrication processes. It can be particularly useful when dealing with washing steps in the case of biological assay for example. Controlling flow with short response time along with high precision is also a key issue in microfluidic. By combining pressure actuation with flowrate monitoring, short response time are achievable keeping a high precision flow rate. It can be particularly useful for droplet generation and size control, droplet on demand generation, long time living cell perfusion and drug injection… In this work we will present the benefit to control and monitor both pressure and flow rate with the MAESFLO. A lot of information can be extracted from these simple parameters, as hydraulic resistance, monophasic and biphasic apparent viscosity, the volume and the position of a trapped air bubble and many more. The proof of concept of stop flow control will also be shown with experimental results stressing the advantages of the “virtual micro-valve”.

2010 ◽  
Vol 57 (4) ◽  
pp. 393-404
Author(s):  
Riza Gürbüz

Controlling Flow Rate and Fluid Level by Variable Frequency Drive Unit The Variable Frequency Drive (VFD) is used to control the speed of the pumpmotor to attain the desired flow rate and fluid level in a fluid system. An AC drive provides efficient flow control by varying the pump-motor speed. The comparison of energy requirements and costs in a system where a throttling device is used for flow control on a centrifugal pump with the power used when an variable frequency drive (VFD) is used to control the same flow, evidently shows potential savings. In this system, AC Motor Frequency drive and static pressure transmitter, turbine type flowmeter and Analog/Digital cards, micro-control unit and computer connection are designed specially to control flow rate, fluid flow type (turbulence or laminar) and water level at the different conditions with different PID parameters.


Author(s):  
Minter Cheng

In hydraulic systems, flow control valve is used to regulate the flow of fluid to actuators by adjusting the valve opening. However, the inlet and the outlet pressures of the valve are not always remaining constant. Any change in pressure will alter the flow rate through the valve and alter the actuator speed consequently. Pressure compensated flow control valves are often used in hydraulic systems when accurate speed control is required under varying supply or load pressures. The basic structure of the pressure compensated flow control valve is by incorporating a compensating spool to maintain a constant pressure drop across the metering orifice. Under ideal circumstance, the actuator speed can be constant and controllable, regardless of load or system pressure changes. However, in practical applications, any system or load pressures variations will cause force unbalance on valve compensating spool and affect the control accuracy. The steady and dynamic response of the flow control valve plays an important role on hydraulic system behavior. Therefore, analyzing and understanding of the valve steady and dynamic behaviors is very important. In this study, the steady and dynamic performance of a pressure compensated flow valve is simulated numerically by solving the characteristic equations. The parameters studied in this research are biased spring constant, pre-compressed spring length, spool mass, and the damping orifice characteristics. The simulation results show that the flow force is identified as the key factor to affect the control accuracy. Increasing the spring constant as well as the pre-compressed spring length will increase the steady flow rate and reduce the transient response time. Decreasing the damping orifice opening or the discharge coefficient will increase the transient response time. The spool mass has practically no effect on the flow rate.


Photonics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 11
Author(s):  
Fulong Yan ◽  
Changshun Yuan ◽  
Chao Li ◽  
Xiong Deng

Interconnecting networks adopting Fast Optical Switches (FOS) can achieve high bandwidth, low latency, and low power consumption. We propose and demonstrate a novel interconnecting topology based on FOS (FOSquare) with distributed fast flow control which is suitable for HPC infrastructures. We also present an Optimized Mapping (OPM) algorithm that maps the most communication-related processes inside a rack. We numerically investigate and compare the network performance of FOSquare with Leaf-Spine under real traffic traces collected by running multiple applications (CG, MG, MILC, and MINI_MD) in an HPC infrastructure. The numerical results show that the FOSquare can reduce >10% latency with respect to Leaf-Spine under the scenario of 16 available cores.


2016 ◽  
Vol 4 (15) ◽  
pp. 3113-3118 ◽  
Author(s):  
Yue Teng ◽  
Le Xin Song ◽  
Wei Liu ◽  
Zhe Yuan Xu ◽  
Qing Shan Wang ◽  
...  

We successfully synthesized ZnGa2O4 microflowers self-assembled by hexagonal single-crystalline nanopetals. The ZnGa2O4 crystal exhibits improved solar-blind detection performance such as short response time, large light to dark current ratio and high photocurrent stability under zero bias voltage.


Author(s):  
Shuai Wu ◽  
Richard Burton ◽  
Zongxia Jiao ◽  
Juntao Yu ◽  
Rongjie Kang

This paper considers the feasibility of a new type of voice coil motor direct drive flow control servo valve. The proposed servo valve controls the flow rate using only a direct measurement of the spool position. A neural network is used to estimate the flow rate based on the spool position, velocity and coil current. The estimated flow rate is fed back to a closed loop controller. The feasibility of the concept is established using simulation techniques only at this point. All results are validated by computer co-simulation using AMESim and Simulink. A simulated model of a VCM-DDV (Voice Coil Motor-Direct Drive Valve) and hydraulic test circuit are built in an AMESim environment. A virtual digital controller is developed in a Simulink environment in which the feedback signals are received from the AMESim model; the controller outputs are sent to the VCM-DDV model in AMESim (by interfacing between these two simulation packages). A LQR (Linear Quadratic Regulator) state feedback and nonlinear compensator controller for spool position tracking is considered as this is the first step for flow control. A flow rate control loop is subsequently included via a neural network flow rate estimator. Simulation results show that this method could control the flow rate to an acceptable degree of precision, but only at low frequencies. This kind of valve can find usage in open loop hydraulic velocity control in many industrial applications.


2021 ◽  
Vol 10 (6) ◽  
pp. 360
Author(s):  
Claudio Alimonti ◽  
Valerio Baiocchi ◽  
Giorgia Bonanotte ◽  
Gábor Molnár

The aqueducts built by the ancient Romans are among the most impressive evidence of their engineering skills. The water inside the aqueducts was transported for kilometers, exploiting only the slight but constant differences in altitude throughout the route. To keep the differences in height constant, the aqueducts could proceed underground or aboveground on well-known arched structures that supported lead, ceramic or stone pipes. In order to reconstruct the characteristics of these structures, it is necessary to carry out an accurate survey of the orthometric heights, and therefore the most suitable technology is geometric levelling. In this case, however, it is not applicable, and therefore here we propose an alternative methodology. The final goal of this work was to estimate the flow of some sectors of these aqueducts preserved in the area south of the city of Rome. This has two main purposes: The first is to reconstruct the flow rate of these aqueducts for historical studies; the second is to check how much the orthometric heights have changed over the centuries, in order to reconstruct the movements from a geophysical and geodynamic point of view. The latter analysis will be developed in a following phase of this research. For this purpose, a high-precision geomatic survey was carried out in the area under study, partly retracing a survey already carried out in 1917 whose purpose and methodologies are not known. The area has been affected by a gradual subsidence over centuries, including since 1917. The observed sections of the aqueducts showed average inclinations, slightly lower than the 2 per thousand that is reported in the literature for similar aqueducts. The measurements carried out allowed the flow rate of the two specific aqueducts to be estimated more accurately, both as they were originally and in the presence of deposits that have accumulated during the years of use of the aqueducts. The reconstruction of the initial geometry will later be used as a reference to estimate how much the geodynamic deformations of the area have deformed the aqueducts themselves.


2021 ◽  
pp. 1-13
Author(s):  
Dayong Guo ◽  
Qing Hu

Aiming at the problems of low precision, slow data transmission speed and long response time of silk quality and temperature control in tobacco intelligent production line, a multi-index testing system is designed. According to the characteristics of PROFIBUS fieldbus technology, combined with PROFIBUS transmission technology, a factory level information network is formed with PROFIBUS-DP as the exchange mode. Based on the PROFIBUS technology, the dual redundancy structure of control ring network and management information ring network is adopted, and the whole network architecture is constructed by logic layering. From the point of view of building enterprise MES system, it locates real-time production monitoring, production task receiving and production line related data collection, integrates equipment control layer, centralized monitoring layer and production management layer, and designs system function structure. The functional structure of the system, and the establishment of a number of data tables, to achieve a tobacco intelligent production line silk quality detection system design. Experimental results show that this method can effectively speed up the data transmission speed and shorten the system response time.


Sign in / Sign up

Export Citation Format

Share Document