Quantitative Evaluation of the Interfacial Free Energies at A Solid-Liquid Lamellar Eutectic Interface

1981 ◽  
Vol 12 ◽  
Author(s):  
W. F. Kaukler ◽  
J. W. Rutter

The solid-liquid interfacial free energies of each of the individual phases comprising the eutectic system, Carbon Tetrabromide-Hexachloroethane, were measured as a function of composition using a “grain boundary groove” technique. Thermodynamic data were combined with groove shape measurements made from high resolution optical photomicrographs of the solid-liquid interfaces to give the interfacial free energy data. An interfacial free energy balance at the eutectic trijunction was performed to obtain all the forces acting on that point. The three interphase interfacial free energies at the eutectic trijunctions as well as a solid-solid phase boundary torque were evaluated.It was found that the solid-liquid interfacial free energies of the two phases of the eutectic could be evaluated from photomicrographs of growing or stationary eutectic interfaces. In addition, it was found that for a substantial range of freezing conditions the eutectic interface shape can be predicted from a knowledge of the interfacial free energies alone.

1994 ◽  
Vol 356 ◽  
Author(s):  
D. Josell ◽  
Z.L. Wang

AbstractExperiments were conducted on multilayer thin films to determine the free energies associated with silver/iron interfaces. Creep studies determined the loads for which the multilayers neither shrank nor stretched over time. Microstructural data was used with the zero creep loads in a model for grain boundary diffusion controlled creep in multilayers to determine the interfacial free energy.


2011 ◽  
Vol 688 ◽  
pp. 51-56
Author(s):  
Hao Ding ◽  
Bai Kun Wang ◽  
Ning Liang ◽  
Kun Liu

The dispersity of nanosized calcium carbonate modified by alkyl amine dimethyl phosphonic acid (WTP-08) through mechano-chemical method in different media was investigated. The modification mechanism was investigated by analyzing the surface energy and its thermodynamic effect on dispersity of nanosized calcium carbonate. The results show that the free energies of nanosized calcium carbonate modified by WTP-08 and its interfacial free energies in air and non-polar media decrease significantly, while the interfacial free energy in water increases remarkably. It can be concluded that modification by WTP-08 improves the dispersion tendency of nanosized calcium carbonate in air and non-polar medium, while it decreases in water. Therefore, modification by WTP-08 makes the dispersity of nanosized calcium carbonate increase in air and non-polar medium and decrease in water.


Solid–liquid interfacial free energy is shown to be highly anisotropic in alloys of some h. c. p. metals and of two metalloids. This anisotropy is evaluated from a study of the equilibrium shapes of small droplets of alloy liquid entrained within solid grains. Factors affecting the attainment of equilibrium in such droplets are considered, and γ -plots are obtained for solid–liquid interfaces in the h. c. p. metals zinc and cadmium. In the magnesium alloys studied, spherical droplet shapes were observed, indicative of essentially isotropic interfacial energies. Droplet shapes were also analysed in some alloys of bismuth and of antimony. The results are related to current ideas of solid–liquid interfacial structure.


1991 ◽  
Vol 56 (2) ◽  
pp. 277-295 ◽  
Author(s):  
Jan Kloubek

A new hypothesis is suggested for the evaluation of the components (γd and γab) and the elements (γa and γb) of the surface free energy. The respective equations are introduced for the interactions at interfaces between a non-polar acid and non-polar base, a polar phase and non-polar acid or base, and two polar phases. The dispersion component, γd, equals the total surface free energy of non-polar phases. However, they can interact at the interface as an acid or a base through their single permanent elements γa or γb, respectively. Otherwise, induced elements γia and γib can also be effective. The surface free energy of polar phases is additively composed of the dispersion, γd, and acid-base components, γab = 2(γaγb)1/2. The proposed equation are verified using the known values of the surface and interfacial free energies for the liquid-liquid systems and they are applied to the solid-liquid interfaces. The values of the elements are determined for water, γwa = 67.7 and γwb = 10.6 mJ/m2, and for other liquids, such as glycerol, formamide, mercury, benzene, diethyl ether and trichloromethane.


2016 ◽  
Vol 18 (46) ◽  
pp. 31850-31861 ◽  
Author(s):  
Stephan N. Steinmann ◽  
Philippe Sautet ◽  
Carine Michel

A strategy based on molecular mechanics free energy of perturbation, seeded by quantum mechanics, is presented to take solvation energies into account in the context of periodic, solid–liquid interfaces.


2021 ◽  
pp. 2150469
Author(s):  
T. G. Naghiyev ◽  
R. M. Rzayev

The solid solutions of [Formula: see text] were synthesized by solid-phase reactions from powder components of CaS, BaS, and Ga2S3. The temperature-concentration dependences of the Gibbs free energy of formation of [Formula: see text] solid solutions from ternary compounds and phase diagrams of the CaGa2S4–BaGa2S4 were determined by a calculation method. It was revealed that continuous solid solutions are formed in these systems. The spinodal decomposition of [Formula: see text] solid solutions into two phases is predicted at ordinary temperatures.


Surfactants ◽  
2019 ◽  
pp. 130-155
Author(s):  
Bob Aveyard

The physical properties of solid/liquid interfaces are more diverse than those of liquid/fluid interfaces, and consequently the interactions giving rise to adsorption of surfactant or polymeric surfactant are more varied. Solid surfaces can be either hydrophilic or hydrophobic, the former being water-wetted and containing polar or ionogenic sites. Electrical charge at the solid surface is neutralized by ions in the inner and outer Helmholtz planes and in the diffuse part of the electrical double layer. Surface charge has a strong influence on adsorption of ionic surfactants. Standard free energies of surfactant adsorption are obtained by use of an appropriate adsorption isotherm such as the Stern–Langmuir equation. Micellar aggregates of various shapes and sizes can also form at solid/liquid interfaces.


Sign in / Sign up

Export Citation Format

Share Document