Applications of Focused Ion Beams to Optoelectronic Device Fabrication - An Overview

1988 ◽  
Vol 126 ◽  
Author(s):  
Randall L. Kubena

ABSTRACTFocused-ion-beam (FIB) technology has been applied during the past decade to a wide variety of device and circuit fabrication procedures. The ability to perform maskless implantation, selective sputtering and deposition, and high resolution lithography with a single system has allowed FIB researchers to explore a large number of unique fabrication processes for silicon, GaAs, and heterojunction devices. Currently, exploratory studies in advanced optoelectronic device fabrication employ the largest number of diverse FIB techniques. In this paper, the major application areas of FIB technology to optoelectronic research are reviewed, and possible uses of ultrasmall (≤500 Å) ion beams in the fabrication of optoelectronic device structures with novel properties are described.

1985 ◽  
Vol 45 ◽  
Author(s):  
Kenji Gamo ◽  
Susumu Namba

Recent advances of focused ion beam systems and their applications are presented. The applications include maskless ion implantation and various maskless patterning techniques which make use of ion induced chemical effects. These are ion beam assisted etching, deposition and ion beam modification techniques and are promising to improve patterning speed and extend applications of focused ion beams.


2001 ◽  
Vol 57-58 ◽  
pp. 891-896 ◽  
Author(s):  
S. Rennon ◽  
L. Bach ◽  
H. König ◽  
J.P. Reithmaier ◽  
A. Forchel ◽  
...  

2005 ◽  
Vol 11 (6) ◽  
pp. 1292-1298 ◽  
Author(s):  
Y.K. Kim ◽  
A.J. Danner ◽  
J.J. Raftery ◽  
K.D. Choquette

2008 ◽  
Author(s):  
Tae-Youl Choi ◽  
Dimos Poulikakos

Focused-ion-beam (FIB) is a useful tool for defining nanoscale structures. High energy heavy ions inherently exhibit destructive nature. A less destructive tool has been devised by using electron beam. FIB is mainly considered as an etching tool, while electron beam can be used for deposition purpose. In this paper, both etching and deposition method are demonstrated for applications in thermal science. Thermal conductivity of nanostructures (such as carbon nanotubes) was measured by using the FIB (and electron beam) nanolithography technique. Boiling characteristics was studied in a submicron heater that could be fabricated by using FIB.


Hyomen Kagaku ◽  
1995 ◽  
Vol 16 (12) ◽  
pp. 724-728
Author(s):  
Shinji NAGAMACHI ◽  
Masahiro UEDA ◽  
Junzo ISHIKAWA

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Valerie Brogden ◽  
Cameron Johnson ◽  
Chad Rue ◽  
Jeremy Graham ◽  
Kurt Langworthy ◽  
...  

Focused ion beams are an essential tool for cross-sectional material analysis at the microscale, preparing TEM samples, and much more. New plasma ion sources allow for higher beam currents and options to use unconventional ion species, resulting in increased versatility over a broader range of substrate materials. In this paper, we present the results of a four-material study from five different ion species at varying beam energies. This, of course, is a small sampling of the enormous variety of potential specimen and ion species combinations. We show that milling rates and texturing artifacts are quite varied. Therefore, there is a need for a systematic exploration of how different ion species mill different materials. There is so much to be done that it should be a community effort. Here, we present a publicly available automation script used to both measure sputter rates and characterize texturing artifacts as well as a collaborative database to which anyone may contribute. We also put forth some ideas for new applications of focused ion beams with novel ion species.


Hyomen Kagaku ◽  
1995 ◽  
Vol 16 (12) ◽  
pp. 729-734
Author(s):  
Masanori KOMURO

Hyomen Kagaku ◽  
1995 ◽  
Vol 16 (12) ◽  
pp. 755-760
Author(s):  
Masayoshi TARUTANI ◽  
Yoshiyuki KAIHARA ◽  
Yoshizo TAKAI ◽  
Ryuichi SHIMIZU

Author(s):  
John F. Walker ◽  
J C Reiner ◽  
C Solenthaler

The high spatial resolution available from TEM can be used with great advantage in the field of microelectronics to identify problems associated with the continually shrinking geometries of integrated circuit technology. In many cases the location of the problem can be the most problematic element of sample preparation. Focused ion beams (FIB) have previously been used to prepare TEM specimens, but not including using the ion beam imaging capabilities to locate a buried feature of interest. Here we describe how a defect has been located using the ability of a FIB to both mill a section and to search for a defect whose precise location is unknown. The defect is known from electrical leakage measurements to be a break in the gate oxide of a field effect transistor. The gate is a square of polycrystalline silicon, approximately 1μm×1μm, on a silicon dioxide barrier which is about 17nm thick. The break in the oxide can occur anywhere within that square and is expected to be less than 100nm in diameter.


2018 ◽  
Author(s):  
Sang Hoon Lee ◽  
Jeff Blackwood ◽  
Stacey Stone ◽  
Michael Schmidt ◽  
Mark Williamson ◽  
...  

Abstract The cross-sectional and planar analysis of current generation 3D device structures can be analyzed using a single Focused Ion Beam (FIB) mill. This is achieved using a diagonal milling technique that exposes a multilayer planar surface as well as the cross-section. this provides image data allowing for an efficient method to monitor the fabrication process and find device design errors. This process saves tremendous sample-to-data time, decreasing it from days to hours while still providing precise defect and structure data.


Sign in / Sign up

Export Citation Format

Share Document